Back to Search Start Over

Automatic detection of mesiodens on panoramic radiographs using artificial intelligence

Authors :
Eun-Gyu Ha
Kug Jin Jeon
Young Hyun Kim
Jae-Young Kim
Sang-Sun Han
Source :
Scientific Reports, Vol 11, Iss 1, Pp 1-8 (2021)
Publication Year :
2021
Publisher :
Nature Portfolio, 2021.

Abstract

Abstract This study aimed to develop an artificial intelligence model that can detect mesiodens on panoramic radiographs of various dentition groups. Panoramic radiographs of 612 patients were used for training. A convolutional neural network (CNN) model based on YOLOv3 for detecting mesiodens was developed. The model performance according to three dentition groups (primary, mixed, and permanent dentition) was evaluated, both internally (130 images) and externally (118 images), using a multi-center dataset. To investigate the effect of image preprocessing, contrast-limited histogram equalization (CLAHE) was applied to the original images. The accuracy of the internal test dataset was 96.2% and that of the external test dataset was 89.8% in the original images. For the primary, mixed, and permanent dentition, the accuracy of the internal test dataset was 96.7%, 97.5%, and 93.3%, respectively, and the accuracy of the external test dataset was 86.7%, 95.3%, and 86.7%, respectively. The CLAHE images yielded less accurate results than the original images in both test datasets. The proposed model showed good performance in the internal and external test datasets and had the potential for clinical use to detect mesiodens on panoramic radiographs of all dentition types. The CLAHE preprocessing had a negligible effect on model performance.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
11
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.b3f4646034e828793dc6c80919e23
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-021-02571-x