Back to Search Start Over

Solitary beam propagation in periodic layered Kerr media enables high-efficiency pulse compression and mode self-cleaning

Authors :
Sheng Zhang
Zongyuan Fu
Bingbing Zhu
Guangyu Fan
Yudong Chen
Shunjia Wang
Yaxin Liu
Andrius Baltuska
Cheng Jin
Chuanshan Tian
Zhensheng Tao
Source :
Light: Science & Applications, Vol 10, Iss 1, Pp 1-11 (2021)
Publication Year :
2021
Publisher :
Nature Publishing Group, 2021.

Abstract

Abstract Generating intense ultrashort pulses with high-quality spatial modes is crucial for ultrafast and strong-field science and can be achieved by nonlinear supercontinuum generation (SCG) and pulse compression. In this work, we propose that the generation of quasi-stationary solitons in periodic layered Kerr media can greatly enhance the nonlinear light-matter interaction and fundamentally improve the performance of SCG and pulse compression in condensed media. With both experimental and theoretical studies, we successfully identify these solitary modes and reveal their unified condition for stability. Space-time coupling is shown to strongly influence the stability of solitons, leading to variations in the spectral, spatial and temporal profiles of femtosecond pulses. Taking advantage of the unique characteristics of these solitary modes, we first demonstrate single-stage SCG and the compression of femtosecond pulses from 170 to 22 fs with an efficiency >85%. The high spatiotemporal quality of the compressed pulses is further confirmed by high-harmonic generation. We also provide evidence of efficient mode self-cleaning, which suggests rich spatiotemporal self-organization of the laser beams in a nonlinear resonator. This work offers a route towards highly efficient, simple, stable and highly flexible SCG and pulse compression solutions for state-of-the-art ytterbium laser technology.

Details

Language :
English
ISSN :
20477538
Volume :
10
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Light: Science & Applications
Publication Type :
Academic Journal
Accession number :
edsdoj.b3e162c52a4013b7ea2b8b944226dd
Document Type :
article
Full Text :
https://doi.org/10.1038/s41377-021-00495-9