Back to Search Start Over

Fatigue and Fracture Resistance Testing of Polyether Ether Ketone (PEEK) Implant Abutments in an Ex Vivo Chewing Simulator Model

Authors :
Babak Saravi
Anselm Flohr
Sebastian B. Patzelt
Benedikt C. Spies
Derek Hazard
Ralf J. Kohal
Source :
Materials, Vol 15, Iss 19, p 6927 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

Polyether ether ketone (PEEK) has been introduced into implant dentistry as a viable alternative to current implant abutment materials. However, data on its physico-mechanical properties are still scarce. The present study sought to shed light on this topic utilizing an ex vivo chewing simulator model. A total of 48 titanium two-piece implants were allocated into three groups (n = 16 per group): (1) implants with PEEK abutments and an internal butt-joint connection (PBJ), (2) implants with PEEK abutments and an internal conical implant–abutment connection (PC), and (3) implants with zirconia abutments and an internal butt-joint connection (ZA). All abutments were restored with a non-precious metal alloy crown mimicking the upper right central incisor. A dynamic chewing simulation of half (n = 8) of the specimens per group was performed with 5 × 106 cycles and a load of 49 N at a frequency of 1.7 Hz with thermocycling between 5 and 55 °C. The other eight specimens served as unloaded controls. Surface roughness, implant–abutment connection microgaps (IACMs), and the titanium base–abutment interface microgaps (TAIMs) in the loaded groups were evaluated. Finally, a quasi-static loading test was performed in a universal testing machine with all samples to evaluate fracture resistance. Overall, 23 samples survived the artificial chewing process. One abutment screw fracture was observed in the PC group. The ZA group showed higher surface roughness values than PEEK abutments. Furthermore, ZA revealed lower TAIM values compared to PEEK abutments. Similarly, ZA was associated with lower IACM values compared to PBJ. Fracture loads/bending moments were 1018 N/704 N cm for PBJ, 966 N/676 N cm for PC, and 738 N/508 N cm for ZA, with no significant differences compared to the unloaded references. Artificial loading did not significantly affect fracture resistance of the examined materials. PEEK abutments were associated with better load-bearing properties than zirconia abutments, although they showed higher microgap values. PEEK abutments could, therefore, be feasible alternatives to zirconia abutments based on the present ex vivo findings resembling 20 years of clinical service.

Details

Language :
English
ISSN :
19961944
Volume :
15
Issue :
19
Database :
Directory of Open Access Journals
Journal :
Materials
Publication Type :
Academic Journal
Accession number :
edsdoj.b3d19bba5af84721adb5edf07c7029e4
Document Type :
article
Full Text :
https://doi.org/10.3390/ma15196927