Back to Search
Start Over
A novel speech analysis algorithm to detect cognitive impairment in a Spanish population
- Source :
- Frontiers in Neurology, Vol 15 (2024)
- Publication Year :
- 2024
- Publisher :
- Frontiers Media S.A., 2024.
-
Abstract
- ObjectiveEarly detection of cognitive impairment in the elderly is crucial for diagnosis and appropriate care. Brief, cost-effective cognitive screening instruments are needed to help identify individuals who require further evaluation. This study presents preliminary data on a new screening technology using automated voice recording analysis software in a Spanish population.MethodData were collected from 174 Spanish-speaking individuals clinically diagnosed as cognitively normal (CN, n = 87) or impaired (mild cognitive impairment [MCI], n = 63; all-cause dementia, n = 24). Participants were recorded performing four common language tasks (Animal fluency, alternating fluency [sports and fruits], phonemic “F” fluency, and Cookie Theft Description). Recordings were processed via text-transcription and digital-signal processing techniques to capture neuropsychological variables and audio characteristics. A training sample of 122 subjects with similar demographics across groups was used to develop an algorithm to detect cognitive impairment. Speech and task features were used to develop five independent machine learning (ML) models to compute scores between 0 and 1, and a final algorithm was constructed using repeated cross-validation. A socio-demographically balanced subset of 52 participants was used to test the algorithm. Analysis of covariance (ANCOVA), covarying for demographic characteristics, was used to predict logistically-transformed algorithm scores.ResultsMean logit algorithm scores were significantly different across groups in the testing sample (p
Details
- Language :
- English
- ISSN :
- 16642295
- Volume :
- 15
- Database :
- Directory of Open Access Journals
- Journal :
- Frontiers in Neurology
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.b37f7a3898fa436eb2dc65d95f6eaa37
- Document Type :
- article
- Full Text :
- https://doi.org/10.3389/fneur.2024.1342907