Back to Search Start Over

Properties and microstructural evolution of a ternary Cu–Co–Fe immiscible alloy solidified under high magnetic fields

Authors :
Chen Wei
Jun Wang
Bowen Dong
Yujie Yan
Lin Wang
Yixuan He
Eric Beaugnon
Jinshan Li
Source :
Journal of Materials Research and Technology, Vol 24, Iss , Pp 3564-3574 (2023)
Publication Year :
2023
Publisher :
Elsevier, 2023.

Abstract

In this study, ternary Cu52Co24Fe24 immiscible alloys are prepared with varying undercoolings and under a high magnetic field. The microstructure evolution and properties of the alloys are investigated. The temperature range of the immiscible gap is determined using CALPHAD. According to the excess Gibbs free energy of liquid, the addition of Fe promotes the demixing tendency of the Cu–Co–Fe ternary system during solidification. With the application of a magnetic field, the (Fe, Co)-rich phases transform from a globular shape to an elongated form along the direction of the magnetic field during solidification, which is due to the existence of the counteracting behavior of the interparticle magnetic dipole-dipole force at the critical droplet size. Under a high magnetic field, the obtained samples had a more dispersed minority phase, higher microhardness and better conductivity. However, the saturation magnetization of the samples with large undercooling decreases with increasing magnetic field due to the suppression of the phase separation behavior under a high magnetic field. This study proposes a novel technology for preparing immiscible alloys with excellent properties by applying a superimposed magnetic field during solidification.

Details

Language :
English
ISSN :
22387854
Volume :
24
Issue :
3564-3574
Database :
Directory of Open Access Journals
Journal :
Journal of Materials Research and Technology
Publication Type :
Academic Journal
Accession number :
edsdoj.b36ef87a4ee44c1e9cea44df9a8bbca8
Document Type :
article
Full Text :
https://doi.org/10.1016/j.jmrt.2023.04.086