Back to Search
Start Over
Allosteric modulators of M1 muscarinic receptors enhance acetylcholine efficacy and decrease locomotor activity and turning behaviors in zebrafish
- Source :
- Scientific Reports, Vol 14, Iss 1, Pp 1-21 (2024)
- Publication Year :
- 2024
- Publisher :
- Nature Portfolio, 2024.
-
Abstract
- Abstract Allosteric modulation of muscarinic acetylcholine receptors (mAChR) has been identified as a potential strategy for regulating cholinergic signaling in the treatment of various neurological disorders. Most positive allosteric modulators (PAMs) of mAChR enhance agonist affinity and potency, while very few PAMs (e.g., amiodarone) selectively enhance G protein coupling efficacy. The key structural features of amiodarone responsible for enhancement of mAChR efficacy were examined in CHO cells expressing M1 receptors. Subsequent incorporation of these structural features into previously identified allosteric modulators of potency (i.e., n-benzyl isatins) generated ligands that demonstrated similar or better enhancement of mAChR efficacy, lower in vivo toxicity, and higher allosteric binding affinity relative to amiodarone. Notable ligands include 8a, c which respectively demonstrated the strongest binding affinity and the most robust enhancement of mAChR efficacy as calculated from an allosteric operational model. Amiodarone derivatives and hybrid ligands were additionally screened in wildtype zebrafish (Danio rerio) to provide preliminary in vivo toxicity data as well as to observe effects on locomotor and turning behaviors relative to other mAChR PAMs. Several compounds, including 8a, c, reduced locomotor activity and increased measures of turning behaviors in zebrafish, suggesting that allosteric modulation of muscarinic receptor efficacy might be useful in the treatment of repetitive behaviors associated with autism spectrum disorder (ASD) and other neuropsychiatric disorders.
Details
- Language :
- English
- ISSN :
- 20452322
- Volume :
- 14
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Scientific Reports
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.b35867a132545b2a514bfdec8308288
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41598-024-65445-y