Back to Search Start Over

Computational design of ultra-robust strain sensors for soft robot perception and autonomy

Authors :
Haitao Yang
Shuo Ding
Jiahao Wang
Shuo Sun
Ruphan Swaminathan
Serene Wen Ling Ng
Xinglong Pan
Ghim Wei Ho
Source :
Nature Communications, Vol 15, Iss 1, Pp 1-15 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Compliant strain sensors are crucial for soft robots’ perception and autonomy. However, their deformable bodies and dynamic actuation pose challenges in predictive sensor manufacturing and long-term robustness. This necessitates accurate sensor modelling and well-controlled sensor structural changes under strain. Here, we present a computational sensor design featuring a programmed crack array within micro-crumples strategy. By controlling the user-defined structure, the sensing performance becomes highly tunable and can be accurately modelled by physical models. Moreover, they maintain robust responsiveness under various demanding conditions including noise interruptions (50% strain), intermittent cyclic loadings (100,000 cycles), and dynamic frequencies (0–23 Hz), satisfying soft robots of diverse scaling from macro to micro. Finally, machine intelligence is applied to a sensor-integrated origami robot, enabling robotic trajectory prediction (

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.b343911fa50844688762633368196601
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-024-45786-y