Back to Search
Start Over
Experimental Investigation of Material Properties and Self-Healing Ability in a Blended Cement Mortar with Blast Furnace Slag
- Source :
- Materials, Vol 13, Iss 11, p 2564 (2020)
- Publication Year :
- 2020
- Publisher :
- MDPI AG, 2020.
-
Abstract
- This paper presents the results of an experimental investigation on the material properties and self-healing ability of a blended cement mortar incorporating blast furnace slag (BFS). The effect of different types and Blaine fineness of BFS on the material properties and self-healing was investigated. Thirteen cement mixtures with BFS of different types and degrees of Blaine fineness are tested to evaluate the mechanical properties, namely compressive strength, bending strength, freeze–thaw, and accelerated carbonation. The pore structure is examined by means of mercury intrusion porosimetry. Seven blended mortar mixtures incorporating BFS for cement are used to evaluate the mechanical properties after applying freeze–thaw cycles until the relative dynamic modulus of elasticity reached 60%. The experimental results reveal that incorporating BFS improves the mechanical properties and self-healing ability. In the investigation of self-healing, smaller particle and high replacement ratios of BFS contribute to increasing the relative dynamic modulus of elasticity and decreasing the carbonation coefficient in the mortar after re-water curing. Moreover, BFS’s larger particles and high replacement ratio are found to provide better self-healing ability. A regression equation is created to predict the relative dynamic modulus of elasticity in mortar considering the Blaine fineness, BFS replacement ratio, and curing conditions.
- Subjects :
- frost resistance
self-healing ability
blast furnace slag
freeze–thaw cycles
relative dynamic modulus of elasticity
carbonation coefficient
Technology
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Engineering (General). Civil engineering (General)
TA1-2040
Microscopy
QH201-278.5
Descriptive and experimental mechanics
QC120-168.85
Subjects
Details
- Language :
- English
- ISSN :
- 19961944
- Volume :
- 13
- Issue :
- 11
- Database :
- Directory of Open Access Journals
- Journal :
- Materials
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.b33e4bbfed3b423b94942cd67888f43a
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/ma13112564