Back to Search Start Over

Novel Mg 2+ binding sites in the cytoplasmic domain of the MgtE Mg 2+ channels revealed by X-ray crystal structures

Authors :
Wang Mengqi
Zhao Yimeng
Hayashi Yoshiki
Ito Koichi
Hattori Motoyuki
Source :
Acta Biochimica et Biophysica Sinica, Vol 55, Pp 683-690 (2023)
Publication Year :
2023
Publisher :
China Science Publishing & Media Ltd., 2023.

Abstract

MgtE is a Mg 2+-selective channel regulated by the intracellular Mg 2+ concentration. MgtE family proteins are highly conserved in all domains of life and contribute to cellular Mg 2+ homeostasis. In humans, mutations in the SLC41 proteins, the eukaryotic counterparts of the bacterial MgtE, are known to be associated with various diseases. The first MgtE structure from a thermophilic bacterium, Thermus thermophilus, revealed that MgtE forms a homodimer consisting of transmembrane and cytoplasmic domains with a plug helix connecting the two and that the cytoplasmic domain possesses multiple Mg 2+ binding sites. Structural and electrophysiological analyses revealed that the dissociation of Mg 2+ ions from the cytoplasmic domain induces structural changes in the cytoplasmic domain, leading to channel opening. Thus, previous works showed the importance of MgtE cytoplasmic Mg 2+ binding sites. Nevertheless, due to the limited structural information on MgtE from different species, the conservation and diversity of the cytoplasmic Mg 2+ binding site in MgtE family proteins remain unclear. Here, we report crystal structures of the Mg 2+-bound MgtE cytoplasmic domains from two different bacterial species, Chryseobacterium hispalense and Clostridiales bacterium, and identify multiple Mg 2+ binding sites, including ones that were not observed in the previous MgtE structure. These structures reveal the conservation and diversity of the cytoplasmic Mg 2+ binding site in the MgtE family proteins.

Details

Language :
English
ISSN :
16729145
Volume :
55
Database :
Directory of Open Access Journals
Journal :
Acta Biochimica et Biophysica Sinica
Publication Type :
Academic Journal
Accession number :
edsdoj.b33394673e7e4f3d9d79717a1de46f95
Document Type :
article
Full Text :
https://doi.org/10.3724/abbs.2023067