Back to Search
Start Over
Function of P2X4 Receptors Is Directly Modulated by a 1:1 Stoichiometric Interaction With 5-HT3A Receptors
- Source :
- Frontiers in Cellular Neuroscience, Vol 14 (2020)
- Publication Year :
- 2020
- Publisher :
- Frontiers Media S.A., 2020.
-
Abstract
- Interacting receptors at the neuronal plasma membrane represent an additional regulatory mode for intracellular transduction pathways. P2X4 receptor triggers fast neurotransmission responses via a transient increase in intracellular Ca2+ levels. It has been proposed that the P2X4 receptor interacts with the 5-HT3A receptor in hippocampal neurons, but their binding stoichiometry and the role of P2X4 receptor activation by ATP on this crosstalking system remains unknown. Via pull-down assays, total internal reflection fluorescence (TIRF) microscopy measurements of the receptors colocalization and expression at the plasma membrane, and atomic force microscopy (AFM) imaging, we have demonstrated that P2X4/5-HT3A receptor complexes can interact with each other in a 1:1 stoichiometric manner that is preserved after ATP binding. Also, macromolecular docking followed by 100 ns molecular dynamics (MD) simulations suggested that the interaction energy of the P2X4 receptor with 5-HT3A receptor is similar at the holo and the apo state of the P2X4 receptor, and the interacting 5-HT3A receptor decreased the ATP binding energy of P2X4 receptor. Finally, the P2X4 receptor-dependent Ca2+ mobilization is inhibited by the 5-HT3A interacting receptor. Altogether, these findings provide novel molecular insights into the allosteric regulation of P2X4/5-HT3A receptor complex in lipid bilayers of living cells via stoichiometric association, rather than accumulation or unspecific clustering of complexes.
Details
- Language :
- English
- ISSN :
- 16625102
- Volume :
- 14
- Database :
- Directory of Open Access Journals
- Journal :
- Frontiers in Cellular Neuroscience
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.b32fa1cce8e4c8eb3d62ce7a20589eb
- Document Type :
- article
- Full Text :
- https://doi.org/10.3389/fncel.2020.00106