Back to Search Start Over

Water quality and habitat drive phytoplankton taxonomic and functional group patterns in the Yangtze River

Authors :
Wenqi Gao
Fangyuan Xiong
Ying Lu
Wei Xin
Haihua Wang
Gangpeng Feng
Chiping Kong
Lei Fang
Xiaoping Gao
Yushun Chen
Source :
Ecological Processes, Vol 13, Iss 1, Pp 1-15 (2024)
Publication Year :
2024
Publisher :
SpringerOpen, 2024.

Abstract

Abstract Background Although phytoplankton are important primary producers in food webs, they are relatively less studied in large rivers compared to other types of systems. To fill this research gap, we studied phytoplankton taxonomic and functional composition and their relationships with water quality, habitat, climate, and land use across 30 river sections in the middle and lower reaches of the Yangtze River during 2017–2018. Results Major observed phytoplankton groups were cyanobacteria, bacillariophyta, and chlorophyta. Phytoplankton total abundance, total biomass, and species richness significantly decreased in the dry season compared to the wet season, with the species and functional composition differing significantly between seasons. Phytoplankton species differences between seasons were mainly contributed by Oscillatoria sp., Pseudanabaena sp., and Melosira granulata. The dfferences in phytoplankton functional groups between seasons were mainly contributed by P (including Closterium sp., Melosira sp.), Lo (including Merismopedia sp., Peridinium sp., Ceratium sp., and Gymnodinium sp.), and J (including Pediastrum sp., Tetraedron sp., Crucigenia sp., Scenedesmus sp., and Coelastrum sp.). The variance partitioning showed that water quality (NO3-N, total suspended solids, turbidity) and habitat (water flow, river bank and river channel conditions) were critical factors in shaping phytoplankton patterns, followed by climate and land use. Conclusions Results indicated that there was significant seasonal variation of phytoplankton in the Yangtze River, with water quality and habitat primarily driving phytoplankton patterns. Our study contributes to the understanding of natural and anthropogenic factors that drive seasonal successional processes of phytoplankton in the Yangtze River. These findings have important implications for environmental management as well as towards the ecological restoration of large rivers.

Details

Language :
English
ISSN :
21921709
Volume :
13
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Ecological Processes
Publication Type :
Academic Journal
Accession number :
edsdoj.b32aad47a04f41b580255da4bd2732dc
Document Type :
article
Full Text :
https://doi.org/10.1186/s13717-024-00489-6