Back to Search Start Over

Identifying the potential transcriptional regulatory network in Hirschsprung disease by integrated analysis of microarray datasets

Authors :
Yong Liu
Ya Gao
Hui Yu
Xinlin Chen
Dian Chen
Weili Yang
Wenyao Xu
Weikang Pan
Jing Miao
Wanying Jia
Baijun Zheng
Donghao Tian
Source :
World Journal of Pediatric Surgery, Vol 6, Iss 2 (2023)
Publication Year :
2023
Publisher :
BMJ Publishing Group, 2023.

Abstract

Objective Hirschsprung disease (HSCR) is one of the common neurocristopathies in children, which is associated with at least 20 genes and involves a complex regulatory mechanism. Transcriptional regulatory network (TRN) has been commonly reported in regulating gene expression and enteric nervous system development but remains to be investigated in HSCR. This study aimed to identify the potential TRN implicated in the pathogenesis and diagnosis of HSCR.Methods Based on three microarray datasets from the Gene Expression Omnibus database, the multiMiR package was used to investigate the microRNA (miRNA)–target interactions, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Then, we collected transcription factors (TFs) from the TransmiR database to construct the TF–miRNA–mRNA regulatory network and used cytoHubba to identify the key modules. Finally, the receiver operating characteristic (ROC) curve was determined and the integrated diagnostic models were established based on machine learning by the support vector machine method.Results We identified 58 hub differentially expressed microRNAs (DEMis) and 16 differentially expressed mRNAs (DEMs). The robust target genes of DEMis and DEMs mainly enriched in several GO/KEGG terms, including neurogenesis, cell–substrate adhesion, PI3K–Akt, Ras/mitogen-activated protein kinase and Rho/ROCK signaling. Moreover, 2 TFs (TP53 and TWIST1), 4 miRNAs (has-miR-107, has-miR-10b-5p, has-miR-659-3p, and has-miR-371a-5p), and 4 mRNAs (PIM3, CHUK, F2RL1, and CA1) were identified to construct the TF–miRNA–mRNA regulatory network. ROC analysis revealed a strong diagnostic value of the key TRN regulons (all area under the curve values were more than 0.8).Conclusion This study suggests a potential role of the TF–miRNA–mRNA network that can help enrich the connotation of HSCR pathogenesis and diagnosis and provide new horizons for treatment.

Subjects

Subjects :
Pediatrics
RJ1-570
Surgery
RD1-811

Details

Language :
English
ISSN :
25165410
Volume :
6
Issue :
2
Database :
Directory of Open Access Journals
Journal :
World Journal of Pediatric Surgery
Publication Type :
Academic Journal
Accession number :
edsdoj.b2fb5dbe2a54ee89ac512322c7f9f21
Document Type :
article
Full Text :
https://doi.org/10.1136/wjps-2022-000547