Back to Search
Start Over
Inactivation of Desiccation-Resistant Salmonella on Apple Slices Following Treatment with ε-Polylysine, Sodium Bisulfate, or Peracetic Acid and Subsequent Dehydration
- Source :
- Journal of Food Protection, Vol 87, Iss 7, Pp 100297- (2024)
- Publication Year :
- 2024
- Publisher :
- Elsevier, 2024.
-
Abstract
- Salmonella is capable of surviving dehydration within various foods, such as dried fruit. Dried fruit, including apple slices, have been the subject of product recalls due to contamination with Salmonella. A study was conducted to determine the fate of Salmonella on apple slices, following immersion in three antimicrobial solutions (viz., ε-polylysine [epsilon-polylysine or EP], sodium bisulfate [SBS], or peracetic acid [PAA]), and subsequent hot air dehydration. Gala apples were aseptically cored and sliced into 0.4 cm thick rings, bisected, and inoculated with a five-strain composite of desiccation-resistant Salmonella, to a population of 8.28 log CFU/slice. Slices were then immersed for 2 min in various concentrations of antimicrobial solutions, including EP (0.005, 0.02, 0.05, and 0.1%), SBS (0.05, 0.1, 0.2, and 0.3%), PAA (18 or 42 ppm), or varying concentrations of PAA + EP, and then dehydrated at 60°C for 5 h. Salmonella populations in positive control samples (inoculated apple slices washed in sterile water) declined by 2.64 log after drying. In the present study, the inactivation of Salmonella, following EP and SBS treatments, increased with increasing concentrations, with maximum reductions of 3.87 and 6.20 log (with 0.1 and 0.3% of the two compounds, respectively). Based on preliminary studies, EP concentrations greater than 0.1% did not result in lower populations of Salmonella. Pretreatment washes with either 18 or 42 ppm of PAA inactivated Salmonella populations by 4.62 and 5.63 log, respectively, following desiccation. Combining PAA with up to 0.1% EP induced no greater population reductions of Salmonella than washing with PAA alone. The addition of EP to PAA solutions appeared to destabilize PAA concentrations, reducing its biocidal efficacy. These results may provide antimicrobial predrying treatment alternatives to promote the reduction of Salmonella during commercial or consumer hot air drying of apple slices.
Details
- Language :
- English
- ISSN :
- 0362028X
- Volume :
- 87
- Issue :
- 7
- Database :
- Directory of Open Access Journals
- Journal :
- Journal of Food Protection
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.b2d053c198594af5a3b12e99cc08c26d
- Document Type :
- article
- Full Text :
- https://doi.org/10.1016/j.jfp.2024.100297