Back to Search Start Over

On a fractional Cauchy problem with singular initial data

Authors :
Benmerrous Abdelmjid
Chadli Lalla saadia
Moujahid Abdelaziz
Elomari M’hamed
Melliani Said
Source :
Nonautonomous Dynamical Systems, Vol 11, Iss 1, Pp 115086-639 (2024)
Publication Year :
2024
Publisher :
De Gruyter, 2024.

Abstract

This article is dedicated to establishing the existence and uniqueness of solutions for the following problem: Dαx(t)=F(t,x(t))x(0)=x0,\left\{\begin{array}{l}{D}^{\alpha }x\left(t)=F\left(t,x\left(t))\hspace{1.0em}\\ x\left(0)={x}_{0},\hspace{1.0em}\end{array}\right. where x0{x}_{0} is the singular generalized function and F satisfies L∞{L}^{\infty } logarithmic type, Dα{D}^{\alpha } is the Caputo derivative of order m−1

Details

Language :
English
ISSN :
23530626
Volume :
11
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nonautonomous Dynamical Systems
Publication Type :
Academic Journal
Accession number :
edsdoj.b2c29c54a408463f8eddbcd0e4084950
Document Type :
article
Full Text :
https://doi.org/10.1515/msds-2024-0004