Back to Search Start Over

Interdiffusion in Zr-Mo/W Intermetallics

Authors :
Kaihua Wang
Xingwei Liu
Tianyu Liu
Chuan He
Jinxu Liu
Source :
Applied Sciences, Vol 13, Iss 11, p 6375 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

Intermetallic compounds or solid solutions can form between Zr and Mo/W, in which the multiphase of the diffusion may be influenced by each other. Interdiffusion kinetic data in such intermetallic systems are highly demanded for material design. In this work, solid–solid diffusion couples of Zr-Mo and Zr-W were prepared by the fixture method, and the interdiffusion behaviors of Zr-Mo and Zr-W at 1300–1500 °C were systematically investigated. The results showed that the intermetallic compounds Mo2Zr/W2Zr formed in the Zr-Mo/W diffusion systems. The growth constants of the Mo2Zr and W2Zr phases varied with temperature in accordance with the Arrhenius relationship, and the activation energies of growth were 109 kJ/mol and 285 kJ/mol, respectively. In addition, (Zr, Mo) solid solution formed between Mo2Zr and pure Zr as diffusion proceeded, resulting in a lower chemical potential for the formation of Mo2Zr. The den Broeder method was used in calculating the interdiffusion coefficients of the solid solution. The results showed that the interdiffusion coefficient in the (Zr, Mo) solid solution decreased with the increase of Mo concentration. Moreover, the diffusion activation energy of the solid solution was evaluated based on the Arrhenius relationship, and the activation energy was 145–170 kJ/mol when the Mo content was in the range of 2–10 at. %. These diffusion kinetic data provide a reference for the composition design and preparation technic of Zr-based alloys.

Details

Language :
English
ISSN :
20763417
Volume :
13
Issue :
11
Database :
Directory of Open Access Journals
Journal :
Applied Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.b2b6f0211ef47ceab531231e67bf76d
Document Type :
article
Full Text :
https://doi.org/10.3390/app13116375