Back to Search Start Over

Two Signaling Modes Are Better than One: Flux-Independent Signaling by Ionotropic Glutamate Receptors Is Coming of Age

Authors :
Valentina Brunetti
Teresa Soda
Roberto Berra-Romani
Giovambattista De Sarro
Germano Guerra
Giorgia Scarpellino
Francesco Moccia
Source :
Biomedicines, Vol 12, Iss 4, p 880 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

Glutamate is the major excitatory neurotransmitter in the central nervous system. Glutamatergic transmission can be mediated by ionotropic glutamate receptors (iGluRs), which mediate rapid synaptic depolarization that can be associated with Ca2+ entry and activity-dependent change in the strength of synaptic transmission, as well as by metabotropic glutamate receptors (mGluRs), which mediate slower postsynaptic responses through the recruitment of second messenger systems. A wealth of evidence reported over the last three decades has shown that this dogmatic subdivision between iGluRs and mGluRs may not reflect the actual physiological signaling mode of the iGluRs, i.e., α-amino-3-hydroxy-5-methyl-4-isoxasolepropionic acid (AMPA) receptors (AMPAR), kainate receptors (KARs), and N-methyl-D-aspartate (NMDA) receptors (NMDARs). Herein, we review the evidence available supporting the notion that the canonical iGluRs can recruit flux-independent signaling pathways not only in neurons, but also in brain astrocytes and cerebrovascular endothelial cells. Understanding the signaling versatility of iGluRs can exert a profound impact on our understanding of glutamatergic synapses. Furthermore, it may shed light on novel neuroprotective strategies against brain disorders.

Details

Language :
English
ISSN :
22279059
Volume :
12
Issue :
4
Database :
Directory of Open Access Journals
Journal :
Biomedicines
Publication Type :
Academic Journal
Accession number :
edsdoj.b2ab878495c443d1a1440e17633e3d86
Document Type :
article
Full Text :
https://doi.org/10.3390/biomedicines12040880