Back to Search Start Over

Development and validation of a generic methyltransferase enzymatic assay based on an SAH riboswitch

Authors :
Ha Pham
Meera Kumar
Anibal Ramos Martinez
Mahbbat Ali
Robert G. Lowery
Source :
SLAS Discovery, Vol 29, Iss 4, Pp 100161- (2024)
Publication Year :
2024
Publisher :
Elsevier, 2024.

Abstract

Methylation of proteins and nucleic acids plays a fundamental role in epigenetic regulation, and discovery of methyltransferase (MT) inhibitors is an area of intense activity. Because of the diversity of MTs and their products, assay methods that detect S-adenosylhomocysteine (SAH) – the invariant product of S-adenosylmethionine (SAM)-dependent methylation reactions - offer some advantages over methods that detect specific methylation events. However, direct, homogenous detection of SAH requires a reagent capable of discriminating between SAH and SAM, which differ by a single methyl group. Moreover, MTs are slow enzymes and many have submicromolar affinities for SAM; these properties translate to a need for detection of SAH at low nanomolar concentrations in the presence of excess SAM. To meet these needs, we leveraged the exquisite molecular recognition properties of a naturally occurring SAH-sensing RNA aptamer, or riboswitch. By splitting the riboswitch into two fragments, such that SAH binding induces assembly of a trimeric complex, we engineered sensors that transduce binding of SAH into positive fluorescence polarization (FP) and time resolved Förster resonance energy transfer (TR-FRET) signals. The split riboswitch configuration, called the AptaFluor™ SAH Methyltransferase Assay, allows robust detection of SAH (Z’ > 0.7) at concentrations below 10 nM, with overnight signal stability in the presence of typical MT assay components. The AptaFluor assay tolerates diverse MT substrates, including histones, nucleosomes, DNA and RNA, and we demonstrated its utility as a robust, enzymatic assay method for several methyltransferases with SAM Km values < 1 µM. The assay was validated for HTS by performing a pilot screen of 1,280 compounds against the SARS-CoV-2 RNA capping enzyme, nsp14. By enabling direct, homogenous detection of SAH at low nanomolar concentrations, the AptaFluor assay provides a universal platform for screening and profiling MTs at physiologically relevant SAM concentrations.

Details

Language :
English
ISSN :
24725552
Volume :
29
Issue :
4
Database :
Directory of Open Access Journals
Journal :
SLAS Discovery
Publication Type :
Academic Journal
Accession number :
edsdoj.b24641d39fdd403a8bd985ead3a395eb
Document Type :
article
Full Text :
https://doi.org/10.1016/j.slasd.2024.100161