Back to Search Start Over

Effect of Unit-Cell Size on the Barely Visible Impact Damage in Woven Composites

Authors :
Hassan M. El-Dessouky
Mohamed Nasr Saleh
Ying Wang
Mohamed S. Alotaibi
Source :
Applied Sciences, Vol 11, Iss 5, p 2364 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

The effect of the weaving architecture and the z-binding yarns, for 2D and 3D woven composites on the low-velocity impact resistance of carbon fibre reinforced composites, is investigated and benchmarked against noncrimp fabric (NCF). Four architectures, namely: NCF, 2D plain weave (2D-PW), 3D orthogonal: plain (ORT-PW) and twill (ORT-TW), were subjected to 15 J impact using a 16 mm-diameter, 6.7 kg hemispherical impactor. Nondestructive techniques, including ultrasonic C-scanning, Digital Image Correlation (DIC) and X-ray computed tomography (CT) were used to map and quantify the size of the induced barely visible impact damage (BVID). The energy absorption of each architecture was correlated to the damage size: both in-plane and in-depth directions. The 3D architectures, regardless of their unit-cell size, demonstrated the highest impact resistance as opposed to 2D-PW and the NCF. X-ray CT segmentation showed the effect of the higher frequency of the z-binding yarns, in the ORT-PW case, in delamination and crack arresting even when compared to the other 3D architecture (ORT-TW). Among all the architectures, ORT-PW exhibited the highest damage resistance with the least damage size. This suggests that accurate design of the z-binding yarns’ path and more importantly its frequency in 3D woven architectures is essential for impact-resistant composite structures.

Details

Language :
English
ISSN :
20763417
Volume :
11
Issue :
5
Database :
Directory of Open Access Journals
Journal :
Applied Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.b200a7b39d564d668018a910d491f987
Document Type :
article
Full Text :
https://doi.org/10.3390/app11052364