Back to Search Start Over

An integrative modelling framework for passive acoustic telemetry

Authors :
Edward Lavender
Stanisław Biber
Janine Illian
Mark James
Peter J. Wright
James Thorburn
Sophie Smout
Source :
Methods in Ecology and Evolution, Vol 14, Iss 10, Pp 2626-2638 (2023)
Publication Year :
2023
Publisher :
Wiley, 2023.

Abstract

Abstract Passive acoustic telemetry is widely used to study the movements of aquatic animals. However, a holistic, mechanistic modelling framework that permits the reconstruction of fine‐scale movements and emergent patterns of space use from detections at receivers remains lacking. Here, we introduce an integrative modelling framework that recapitulates the movement and detection processes that generate detections to reconstruct fine‐scale movements and patterns of space use. This framework is supported by a new family of algorithms designed for detection and depth observations and can be flexibly extended to incorporate other data types. Using simulation, we illustrate applications of our framework and evaluate algorithm utility and sensitivity in different settings. As a case study, we analyse movement data collected from the Critically Endangered flapper skate (Dipturus intermedius) in Scotland. We show that our methods can be used to reconstruct fine‐scale movement paths, patterns of space use and support habitat preference analyses. For reconstructing patterns of space use, simulations show that the methods are consistently more instructive than the most widely used alternative approach (the mean‐position algorithm), particularly in clustered receiver arrays. For flapper skate, the reconstruction of movements reveals responses to disturbance, fine‐scale spatial partitioning and patterns of space use with significant implications for marine management. We conclude that this framework represents a widely applicable methodological advance with applications to studies of pelagic, demersal and benthic species across multiple spatiotemporal scales.

Details

Language :
English
ISSN :
2041210X
Volume :
14
Issue :
10
Database :
Directory of Open Access Journals
Journal :
Methods in Ecology and Evolution
Publication Type :
Academic Journal
Accession number :
edsdoj.b1df16d1fc8451a96947c11761db639
Document Type :
article
Full Text :
https://doi.org/10.1111/2041-210X.14193