Back to Search
Start Over
An eigenvalue problem related to the variable exponent double-phase operator
- Source :
- AIMS Mathematics, Vol 9, Iss 1, Pp 1664-1682 (2024)
- Publication Year :
- 2024
- Publisher :
- AIMS Press, 2024.
-
Abstract
- In this paper, we studied a double-phase eigenvalue problem with large variable exponents. Let $ \lambda^{1}_{(p_{n}(\cdot), \, q_{n}(\cdot))} $ be the first eigenvalues and $ u_{n} $ be the first eigenfunctions, normalized by $ \|u_{n}\|_{\mathcal{H}_{n}} = 1 $. Under some assumptions on the variable exponents $ p_{n}(\cdot) $ and $ q_{n}(\cdot) $, we showed that $ \lambda^{1}_{(p_{n}(\cdot), \, q_{n}(\cdot))} $ converges to $ \Lambda_{\infty} $, $ u_{n} $ converges to $ u_{\infty} $ uniformly in the space $ C^{\alpha}(\Omega)\, (0 < \alpha < 1) $ and $ u_{\infty} $ is a nontrivial viscosity solution to a Dirichlet $ \infty $-Laplacian problem. Even in the case where the variable exponents reduce to the constant exponents, our work is the first one dealing with a double-phase eigenvalue problem with large exponents.
Details
- Language :
- English
- ISSN :
- 24736988
- Volume :
- 9
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- AIMS Mathematics
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.b179f6714c0549608dc964cdcf1491b8
- Document Type :
- article
- Full Text :
- https://doi.org/10.3934/math.2024082?viewType=HTML