Back to Search Start Over

Thin-film (Al)BCN materials synthesized by sequential precursor pulses to mimic atomic layer deposition

Authors :
Ramazan O. Apaydin
Antonius A. I. Aarnink
Dirk J. Gravesteijn
Michel P. de Jong
Alexey Y. Kovalgin
Source :
AIP Advances, Vol 13, Iss 2, Pp 025237-025237-9 (2023)
Publication Year :
2023
Publisher :
AIP Publishing LLC, 2023.

Abstract

This work brings novel insights into the existing knowledge on the deposition of films containing boron (B), carbon (C), nitrogen (N), and aluminum (Al). The (Al)BCN films are obtained at low substrate temperatures (TS) of 250–400 °C from triethylborane, ammonia (NH3), and trimethylaluminum. For BCN films, a nearly similar elemental composition of B0.42C0.41N0.15O0.02, with 1–2 at. % variations, is observed for substantial ranges of TS and NH3-exposure time. This can indicate a similar growth mechanism and/or formation of a single-phase material. While excluding precursor underdosing, a remarkable dependence of growth rate per cycle (GPC) on total gas pressure (Ptot) is observed. The GPC approaches near saturation regime for Ptot between 1 and 10 mbar, for TS = 330–375 °C, which might support the occurrence of a surface-adduct assisted pathway. The level of GPC saturation is influenced by TS. For a wide range of process conditions, N-share in the films slightly varies between 12 and 16 at. %. C-share only changes between 40 and 42 at. %. The attempt to increase N-share by dissociating NH3 into NH2 radicals by hot wire assistance remarkably shows the opposite effect, i.e., a decrease in the N-share from 15 to 6 at. %. This is accompanied by a corresponding increase in the B- and, in particular, C-shares, suggesting that the removal of carbon can occur via the incorporation of nitrogen. For AlBCN films, changing Ptot has a strong effect on their elemental composition. At Ptot = 10 mbar, Al-deficient films grow, whereas a Ptot of 0.2 mbar leads to mainly AlN-containing films with some inclusions of BN.

Subjects

Subjects :
Physics
QC1-999

Details

Language :
English
ISSN :
21583226
Volume :
13
Issue :
2
Database :
Directory of Open Access Journals
Journal :
AIP Advances
Publication Type :
Academic Journal
Accession number :
edsdoj.b138e6c09a364050ba39c2d90fefcb9e
Document Type :
article
Full Text :
https://doi.org/10.1063/6.0002331