Back to Search Start Over

Biodegradable Magnesium Alloys Promote Angio‐Osteogenesis to Enhance Bone Repair

Authors :
Hyung‐Seop Han
Indong Jun
Hyun‐Kwang Seok
Kang‐Sik Lee
Kyungwoo Lee
Frank Witte
Diego Mantovani
Yu‐Chan Kim
Sion Glyn‐Jones
James R. Edwards
Source :
Advanced Science, Vol 7, Iss 15, Pp n/a-n/a (2020)
Publication Year :
2020
Publisher :
Wiley, 2020.

Abstract

Abstract Biodegradable metallic materials represent a potential step‐change technology that may revolutionize the treatment of broken bones. Implants made with biodegradable metals are significantly stronger than their polymer counterparts and fully biodegradable in vivo, removing the need for secondary surgery or long‐term complications. Here, it is shown how clinically approved Mg alloy promotes improved bone repair using an integrated state of the art fetal mouse metatarsal assay coupled with in vivo preclinical studies, second harmonic generation, secretome array analysis, perfusion bioreactor, and high‐resolution 3D confocal imaging of vasculature within skeletal tissue, to reveal a vascular‐mediated pro‐osteogenic mechanism controlling enhanced tissue regeneration. The optimized mechanical properties and corrosion rate of the Mg alloy lead to a controlled release of metallic Mg, Ca, and Zn ions at a rate that facilitates both angiogenesis and coupled osteogenesis for better bone healing, without causing adverse effects at the implantation site. The findings from this study support ongoing development and refinement of biodegradable metal systems to act as crucial portal technologies with significant potential to improve many clinical applications.

Details

Language :
English
ISSN :
21983844 and 20200080
Volume :
7
Issue :
15
Database :
Directory of Open Access Journals
Journal :
Advanced Science
Publication Type :
Academic Journal
Accession number :
edsdoj.b100a8dec3cc4c5299b1a3de07567856
Document Type :
article
Full Text :
https://doi.org/10.1002/advs.202000800