Back to Search Start Over

Radiofrequency ice dielectric measurements at Summit Station, Greenland

Authors :
Juan Antonio Aguilar
Patrick Allison
Dave Besson
Abby Bishop
Olga Botner
Sjoerd Bouma
Stijn Buitink
Maddalena Cataldo
Brian A. Clark
Kenny Couberly
Zach Curtis-Ginsberg
Paramita Dasgupta
Simon de Kockere
Krijn D. de Vries
Cosmin Deaconu
Michael A. DuVernois
Anna Eimer
Christian Glaser
Allan Hallgren
Steffen Hallmann
Jordan Christian Hanson
Bryan Hendricks
Jakob Henrichs
Nils Heyer
Christian Hornhuber
Kaeli Hughes
Timo Karg
Albrecht Karle
John L. Kelley
Michael Korntheuer
Marek Kowalski
Ilya Kravchenko
Ryan Krebs
Robert Lahmann
Uzair Latif
Joseph Mammo
Matthew J. Marsee
Zachary S. Meyers
Kelli Michaels
Katharine Mulrey
Marco Muzio
Anna Nelles
Alexander Novikov
Alisa Nozdrina
Eric Oberla
Bob Oeyen
Ilse Plaisier
Noppadol Punsuebsay
Lilly Pyras
Dirk Ryckbosch
Olaf Scholten
David Seckel
Mohammad Ful Hossain Seikh
Daniel Smith
Jethro Stoffels
Daniel Southall
Karen Terveer
Simona Toscano
Delia Tosi
Dieder J. Van Den Broeck
Nick van Eijndhoven
Abigail G. Vieregg
Janna Z. Vischer
Christoph Welling
Dawn R. Williams
Stephanie Wissel
Robert Young
Adrian Zink
Source :
Journal of Glaciology, Pp 1-12
Publisher :
Cambridge University Press.

Abstract

We recently reported on the radio-frequency attenuation length of cold polar ice at Summit Station, Greenland, based on bi-static radar measurements of radio-frequency bedrock echo strengths taken during the summer of 2021. Those data also allow studies of (a) the relative contributions of coherent (such as discrete internal conducting layers with sub-centimeter transverse scale) vs incoherent (e.g. bulk volumetric) scattering, (b) the magnitude of internal layer reflection coefficients, (c) limits on signal propagation velocity asymmetries (‘birefringence’) and (d) limits on signal dispersion in-ice over a bandwidth of ~100 MHz. We find that (1) attenuation lengths approach 1 km in our band, (2) after averaging 10 000 echo triggers, reflected signals observable over the thermal floor (to depths of ~1500 m) are consistent with being entirely coherent, (3) internal layer reflectivities are ≈–60$\to$–70 dB, (4) birefringent effects for vertically propagating signals are smaller by an order of magnitude relative to South Pole and (5) within our experimental limits, glacial ice is non-dispersive over the frequency band relevant for neutrino detection experiments.

Details

Language :
English
ISSN :
00221430 and 17275652
Database :
Directory of Open Access Journals
Journal :
Journal of Glaciology
Publication Type :
Academic Journal
Accession number :
edsdoj.b0aeff4095ba4d5abcd145600189daec
Document Type :
article
Full Text :
https://doi.org/10.1017/jog.2023.72