Back to Search Start Over

Proteolytic Vesicles Derived from Salmonella enterica Serovar Typhimurium-Infected Macrophages: Enhancing MMP-9-Mediated Invasion and EV Accumulation

Authors :
Alon Nudelman
Anjana Shenoy
Hyla Allouche-Arnon
Michal Fisler
Irit Rosenhek-Goldian
Lior Dayan
Paula Abou Karam
Ziv Porat
Inna Solomonov
Neta Regev-Rudzki
Amnon Bar-Shir
Irit Sagi
Source :
Biomedicines, Vol 12, Iss 2, p 434 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

Proteolysis of the extracellular matrix (ECM) by matrix metalloproteinases (MMPs) plays a crucial role in the immune response to bacterial infections. Here we report the secretion of MMPs associated with proteolytic extracellular vesicles (EVs) released by macrophages in response to Salmonella enterica serovar Typhimurium infection. Specifically, we used global proteomics, in vitro, and in vivo approaches to investigate the composition and function of these proteolytic EVs. Using a model of S. Typhimurium infection in murine macrophages, we isolated and characterized a population of small EVs. Bulk proteomics analysis revealed significant changes in protein cargo of naïve and S. Typhimurium-infected macrophage-derived EVs, including the upregulation of MMP-9. The increased levels of MMP-9 observed in immune cells exposed to S. Typhimurium were found to be regulated by the toll-like receptor 4 (TLR-4)-mediated response to bacterial lipopolysaccharide. Macrophage-derived EV-associated MMP-9 enhanced the macrophage invasion through Matrigel as selective inhibition of MMP-9 reduced macrophage invasion. Systemic administration of fluorescently labeled EVs into immunocompromised mice demonstrated that EV-associated MMP activity facilitated increased accumulation of EVs in spleen and liver tissues. This study suggests that macrophages secrete proteolytic EVs to enhance invasion and ECM remodeling during bacterial infections, shedding light on an essential aspect of the immune response.

Details

Language :
English
ISSN :
22279059
Volume :
12
Issue :
2
Database :
Directory of Open Access Journals
Journal :
Biomedicines
Publication Type :
Academic Journal
Accession number :
edsdoj.b0a5d6ff48364c648a48f59bc6e7c9ef
Document Type :
article
Full Text :
https://doi.org/10.3390/biomedicines12020434