Back to Search
Start Over
Toeplitz operators between large Fock spaces in several complex variables
- Source :
- AIMS Mathematics, Vol 7, Iss 1, Pp 1293-1306 (2022)
- Publication Year :
- 2022
- Publisher :
- AIMS Press, 2022.
-
Abstract
- Let $ \omega $ belong to the weight class $ \mathcal{W} $, the large Fock space $ \mathcal{F}_{\omega}^{p} $ consists of all holomorphic functions $ f $ on $ \mathbb{C}^{n} $ such that the function $ f(\cdot)\omega(\cdot)^{1/2} $ is in $ L^p(\mathbb{C}^{n}, dv) $. In this paper, given a positive Borel measure $ \mu $ on $ {\mathbb C}^n $, we characterize the boundedness and compactness of Toeplitz operator $ T_\mu $ between two large Fock spaces $ F^{p}_\omega $ and $ F^{q}_\omega $ for all possible $ 0 < p, q < \infty $.
- Subjects :
- large fock space
boundedness
compactness
toeplitz operator
Mathematics
QA1-939
Subjects
Details
- Language :
- English
- ISSN :
- 24736988
- Volume :
- 7
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- AIMS Mathematics
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.b09ecaef4794c208f72d2cdcc23a863
- Document Type :
- article
- Full Text :
- https://doi.org/10.3934/math.2022076?viewType=HTML