Back to Search Start Over

Improved calorimetric particle identification in NA62 using machine learning techniques

Authors :
The NA62 collaboration
E. Cortina Gil
A. Kleimenova
E. Minucci
S. Padolski
P. Petrov
A. Shaikhiev
R. Volpe
W. Fedorko
T. Numao
Y. Petrov
B. Velghe
V. W. S. Wong
M. Yu
D. Bryman
J. Fu
Z. Hives
T. Husek
J. Jerhot
K. Kampf
M. Zamkovsky
B. De Martino
M. Perrin-Terrin
A. T. Akmete
R. Aliberti
G. Khoriauli
J. Kunze
D. Lomidze
L. Peruzzo
M. Vormstein
R. Wanke
P. Dalpiaz
M. Fiorini
A. Mazzolari
I. Neri
A. Norton
F. Petrucci
M. Soldani
H. Wahl
L. Bandiera
A. Cotta Ramusino
A. Gianoli
M. Romagnoni
A. Sytov
E. Iacopini
G. Latino
M. Lenti
P. Lo Chiatto
I. Panichi
A. Parenti
A. Bizzeti
F. Bucci
A. Antonelli
G. Georgiev
V. Kozhuharov
G. Lanfranchi
S. Martellotti
M. Moulson
T. Spadaro
G. Tinti
F. Ambrosino
T. Capussela
M. Corvino
M. D’Errico
D. Di Filippo
R. Fiorenza
R. Giordano
P. Massarotti
M. Mirra
M. Napolitano
I. Rosa
G. Saracino
G. Anzivino
F. Brizioli
E. Imbergamo
R. Lollini
R. Piandani
C. Santoni
M. Barbanera
P. Cenci
B. Checcucci
P. Lubrano
M. Lupi
M. Pepe
M. Piccini
F. Costantini
L. Di Lella
N. Doble
M. Giorgi
S. Giudici
G. Lamanna
E. Lari
E. Pedreschi
M. Sozzi
C. Cerri
R. Fantechi
L. Pontisso
F. Spinella
I. Mannelli
G. D’Agostini
M. Raggi
A. Biagioni
P. Cretaro
O. Frezza
E. Leonardi
A. Lonardo
M. Turisini
P. Valente
P. Vicini
R. Ammendola
V. Bonaiuto
A. Fucci
A. Salamon
F. Sargeni
R. Arcidiacono
B. Bloch-Devaux
M. Boretto
E. Menichetti
E. Migliore
D. Soldi
C. Biino
A. Filippi
F. Marchetto
A. Briano Olvera
J. Engelfried
N. Estrada-Tristan
M. A. Reyes Santos
P. Boboc
A. M. Bragadireanu
S. A. Ghinescu
O. E. Hutanu
L. Bician
T. Blazek
V. Cerny
Z. Kucerova
J. Bernhard
A. Ceccucci
M. Ceoletta
H. Danielsson
N. De Simone
F. Duval
B. Döbrich
L. Federici
E. Gamberini
L. Gatignon
R. Guida
F. Hahn
E. B. Holzer
B. Jenninger
M. Koval
P. Laycock
G. Lehmann Miotto
P. Lichard
A. Mapelli
R. Marchevski
K. Massri
M. Noy
V. Palladino
J. Pinzino
V. Ryjov
S. Schuchmann
S. Venditti
T. Bache
M. B. Brunetti
V. Duk
V. Fascianelli
J. R. Fry
F. Gonnella
E. Goudzovski
J. Henshaw
L. Iacobuzio
C. Kenworthy
C. Lazzeroni
N. Lurkin
F. Newson
C. Parkinson
A. Romano
J. Sanders
A. Sergi
A. Sturgess
J. Swallow
A. Tomczak
H. Heath
R. Page
S. Trilov
B. Angelucci
D. Britton
C. Graham
D. Protopopescu
J. Carmignani
J. B. Dainton
R. W. L. Jones
G. Ruggiero
L. Fulton
D. Hutchcroft
E. Maurice
B. Wrona
A. Conovaloff
P. Cooper
D. Coward
P. Rubin
A. Baeva
D. Baigarashev
D. Emelyanov
T. Enik
V. Falaleev
S. Fedotov
K. Gorshanov
E. Gushchin
V. Kekelidze
D. Kereibay
S. Kholodenko
A. Khotyantsev
A. Korotkova
Y. Kudenko
V. Kurochka
V. Kurshetsov
L. Litov
D. Madigozhin
M. Medvedeva
A. Mefodev
M. Misheva
N. Molokanova
S. Movchan
V. Obraztsov
A. Okhotnikov
A. Ostankov
I. Polenkevich
Yu. Potrebenikov
A. Sadovskiy
V. Semenov
S. Shkarovskiy
V. Sugonyaev
O. Yushchenko
A. Zinchenko
Source :
Journal of High Energy Physics, Vol 2023, Iss 11, Pp 1-15 (2023)
Publication Year :
2023
Publisher :
SpringerOpen, 2023.

Abstract

Abstract Measurement of the ultra-rare K + → π + ν ν ¯ $$ {K}^{+}\to {\pi}^{+}\nu \overline{\nu} $$ decay at the NA62 experiment at CERN requires high-performance particle identification to distinguish muons from pions. Calorimetric identification currently in use, based on a boosted decision tree algorithm, achieves a muon misidentification probability of 1.2 × 10 −5 for a pion identification efficiency of 75% in the momentum range of 15–40 GeV/c. In this work, calorimetric identification performance is improved by developing an algorithm based on a convolutional neural network classifier augmented by a filter. Muon misidentification probability is reduced by a factor of six with respect to the current value for a fixed pion-identification efficiency of 75%. Alternatively, pion identification efficiency is improved from 72% to 91% for a fixed muon misidentification probability of 10 −5.

Details

Language :
English
ISSN :
10298479
Volume :
2023
Issue :
11
Database :
Directory of Open Access Journals
Journal :
Journal of High Energy Physics
Publication Type :
Academic Journal
Accession number :
edsdoj.b0925bcdc8a24492bdae2ca893573300
Document Type :
article
Full Text :
https://doi.org/10.1007/JHEP11(2023)138