Back to Search Start Over

Searching for Continuous n-Clusters with Boolean Reasoning

Authors :
Marcin Michalak
Source :
Symmetry, Vol 16, Iss 10, p 1286 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

A bicluster consists of a subset of rows and columns of a given matrix, whose intersection defines the region (bicluster) of values of precisely defined condition. Through the decades, a variety of biclustering techniques have been successfully developed. Recently, it was proved that many possible patterns defined in two-dimensional data could be found with the application of Boolean reasoning. The provided theorems showed that any existing pattern in the data could be unequivocally encoded as an implicant of a proper Boolean function. Moreover, a prime implicant of that function encoded the inclusion-maximal (non-extendable) pattern. On the other hand, the definition of some two-dimensional patterns may be easily extended to three-dimensional patterns (triclusters) as well as to any number of dimensions (n-clusters). This paper presents a new approach for searching for three- and higher-dimensional simple patterns in continuous data with Boolean reasoning. Providing the definition of the Boolean function for this tasks, it is shown that the similar correspondence—implicants encode patterns, and prime implicants encode inclusion-maximal patterns—has a strong mathematical background: the proofs of appropriate theorems are also presented in this paper.

Details

Language :
English
ISSN :
16101286 and 20738994
Volume :
16
Issue :
10
Database :
Directory of Open Access Journals
Journal :
Symmetry
Publication Type :
Academic Journal
Accession number :
edsdoj.b08715e2754c4363a9d6aa3cbc6b6778
Document Type :
article
Full Text :
https://doi.org/10.3390/sym16101286