Back to Search
Start Over
Searching for Continuous n-Clusters with Boolean Reasoning
- Source :
- Symmetry, Vol 16, Iss 10, p 1286 (2024)
- Publication Year :
- 2024
- Publisher :
- MDPI AG, 2024.
-
Abstract
- A bicluster consists of a subset of rows and columns of a given matrix, whose intersection defines the region (bicluster) of values of precisely defined condition. Through the decades, a variety of biclustering techniques have been successfully developed. Recently, it was proved that many possible patterns defined in two-dimensional data could be found with the application of Boolean reasoning. The provided theorems showed that any existing pattern in the data could be unequivocally encoded as an implicant of a proper Boolean function. Moreover, a prime implicant of that function encoded the inclusion-maximal (non-extendable) pattern. On the other hand, the definition of some two-dimensional patterns may be easily extended to three-dimensional patterns (triclusters) as well as to any number of dimensions (n-clusters). This paper presents a new approach for searching for three- and higher-dimensional simple patterns in continuous data with Boolean reasoning. Providing the definition of the Boolean function for this tasks, it is shown that the similar correspondence—implicants encode patterns, and prime implicants encode inclusion-maximal patterns—has a strong mathematical background: the proofs of appropriate theorems are also presented in this paper.
- Subjects :
- biclustering
n-clustering
continuous data
Boolean reasoning
Mathematics
QA1-939
Subjects
Details
- Language :
- English
- ISSN :
- 16101286 and 20738994
- Volume :
- 16
- Issue :
- 10
- Database :
- Directory of Open Access Journals
- Journal :
- Symmetry
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.b08715e2754c4363a9d6aa3cbc6b6778
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/sym16101286