Back to Search Start Over

High-threshold mechanosensitive ion channels blocked by a novel conopeptide mediate pressure-evoked pain.

Authors :
Liam J Drew
Francois Rugiero
Paolo Cesare
Jonathan E Gale
Bjarke Abrahamsen
Sarah Bowden
Sebastian Heinzmann
Michelle Robinson
Andreas Brust
Barbara Colless
Richard J Lewis
John N Wood
Source :
PLoS ONE, Vol 2, Iss 6, p e515 (2007)
Publication Year :
2007
Publisher :
Public Library of Science (PLoS), 2007.

Abstract

Little is known about the molecular basis of somatosensory mechanotransduction in mammals. We screened a library of peptide toxins for effects on mechanically activated currents in cultured dorsal root ganglion neurons. One conopeptide analogue, termed NMB-1 for noxious mechanosensation blocker 1, selectively inhibits (IC(50) 1 microM) sustained mechanically activated currents in a subset of sensory neurons. Biotinylated NMB-1 retains activity and binds selectively to peripherin-positive nociceptive sensory neurons. The selectivity of NMB-1 was confirmed by the fact that it has no inhibitory effects on voltage-gated sodium and calcium channels, or ligand-gated channels such as acid-sensing ion channels or TRPA1 channels. Conversely, the tarantula toxin, GsMTx-4, which inhibits stretch-activated ion channels, had no effects on mechanically activated currents in sensory neurons. In behavioral assays, NMB-1 inhibits responses only to high intensity, painful mechanical stimulation and has no effects on low intensity mechanical stimulation or thermosensation. Unexpectedly, NMB-1 was found to also be an inhibitor of rapid FM1-43 loading (a measure of mechanotransduction) in cochlear hair cells. These data demonstrate that pharmacologically distinct channels respond to distinct types of mechanical stimuli and suggest that mechanically activated sustained currents underlie noxious mechanosensation. NMB-1 thus provides a novel diagnostic tool for the molecular definition of channels involved in hearing and pressure-evoked pain.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
19326203
Volume :
2
Issue :
6
Database :
Directory of Open Access Journals
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
edsdoj.b06e7269346846589e0b2a0296987146
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pone.0000515