Back to Search Start Over

Genome mining for macrolactam-encoding gene clusters allowed for the network-guided isolation of β-amino acid-containing cyclic derivatives and heterologous production of ciromicin A

Authors :
Elena Seibel
Soohyun Um
Marie Dayras
Kasun H. Bodawatta
Martinus de Kruijff
Knud A. Jønsson
Michael Poulsen
Ki Hyun Kim
Christine Beemelmanns
Source :
Communications Chemistry, Vol 6, Iss 1, Pp 1-15 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract β-Amino acid-containing macrolactams represent a structurally diverse group of bioactive natural products derived from polyketides; however we are currently lacking a comprehensive overview about their abundance across bacterial families and the underlying biosynthetic diversity. In this study, we employed a targeted β-amino acid-specific homology-based multi-query search to identify potential bacterial macrolactam producers. Here we demonstrate that approximately 10% of each of the identified actinobacterial genera harbor a biosynthetic gene cluster (BGC) encoding macrolactam production. Based on our comparative study, we propose that mutations occurring in specific regions of polyketide synthases (PKS) are the primary drivers behind the variation in macrolactam ring sizes. We successfully validated two producers of ciromicin A from the genus Amycolatopsis, revised the composition of the biosynthetic gene cluster region mte of macrotermycins, and confirmed the ciromicin biosynthetic pathway through heterologous expression. Additionally, network-based metabolomic analysis uncovered three previously unreported macrotermycin congeners from Amycolatopsis sp. M39. The combination of targeted mining and network-based analysis serves as a powerful tool for identifying macrolactam producers and our studies will catalyze the future discovery of yet unreported macrolactams.

Subjects

Subjects :
Chemistry
QD1-999

Details

Language :
English
ISSN :
23993669
Volume :
6
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Communications Chemistry
Publication Type :
Academic Journal
Accession number :
edsdoj.9ff7c5f8dbc4477d90a4f3f604015f36
Document Type :
article
Full Text :
https://doi.org/10.1038/s42004-023-01034-w