Back to Search Start Over

The HOTAIR/miR-214/ST6GAL1 crosstalk modulates colorectal cancer procession through mediating sialylated c-Met via JAK2/STAT3 cascade

Authors :
Bing Liu
Qianqian Liu
Shimeng Pan
Yiran Huang
Yu Qi
Shuangda Li
Yang Xiao
Li Jia
Source :
Journal of Experimental & Clinical Cancer Research, Vol 38, Iss 1, Pp 1-12 (2019)
Publication Year :
2019
Publisher :
BMC, 2019.

Abstract

Abstract Background The regulatory non-coding RNAs, including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), emerge as pivotal markers during tumor progression. Abnormal sialylated glycoprotein often leads to the malignancy of colorectal cancer (CRC). Methods Differential levels of HOTAIR and ST6GAL1 are analyzed by qRT-PCR. Functionally, CRC cell proliferation, aggressiveness and apoptosis are measured through relevant experiments, including CCK8 assay, colony formation assay, transwell assay, western blot and flow cytometry. Dual-luciferase reporter gene assay and RIP assay confirm the direct interaction between HOTAIR and miR-214. The lung metastasis, liver metatstasis and xenografts nude mice models are established to show the in vivo effect of HOATIR. Results Here, differential levels of HOTAIR and ST6GAL1 are primarily observed in CRC samples and cells. Upregulated HOTAIR and ST6GAL1 are crucial predictors for poor CRC prognosis. Altered level of ST6GAL1 modulates CRC malignancy. Furthermore, ST6GAL1 and HOTAIR are confirmed as the direct targets of miR-214, and ST6GAL1 is regulated by HOTAIR via sponging miR-214. ST6GAL1 induces the elevated metabolic sialylation of c-Met, which is co-mediated by HOTAIR and miR-214. Sialylated c-Met affects the activity of JAK2/STAT3 pathway. The regulatory role of HOTAIR/miR-214/ST6GAL1 axis also impacts CRC procession. In addition, HOTAIR mediates lung metastasis, liver metastasis and tumorigenesis in vivo. ShHOTAIR and AMG-208 are combined to inhibit tumorigenesis for successful drug development. Conclusion The HOTAIR/miR-214/ST6GAL1 axis commands the CRC malignancy by modifying c-Met with sialylation and activating JAK2/STAT3 pathway. Our study presents novel insights into CRC progression and provided prospective therapeutic target for CRC.

Details

Language :
English
ISSN :
17569966
Volume :
38
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Journal of Experimental & Clinical Cancer Research
Publication Type :
Academic Journal
Accession number :
edsdoj.9ff5b7be17814bd98d5708bb322f6a96
Document Type :
article
Full Text :
https://doi.org/10.1186/s13046-019-1468-5