Back to Search Start Over

Energy and economic analysis of building integrated photovoltaic thermal system: Seasonal dynamic modeling assisted with machine learning-aided method and multi-objective genetic optimization

Authors :
Bashar Shboul
Mohamed E. Zayed
Waqar Muhammad Ashraf
Muhammad Usman
Dibyendu Roy
Kashif Irshad
Shafiqur Rehman
Source :
Alexandria Engineering Journal, Vol 94, Iss , Pp 131-148 (2024)
Publication Year :
2024
Publisher :
Elsevier, 2024.

Abstract

Building integrated photovoltaic thermal (BIPV/T) systems offer a highly effective means of generating clean energy for both electricity and heating purposes in residential buildings. Hence, this article introduces a new BIPV/T system to optimally minimize the energy consumption of a household residential building. The meticulous design of the proposed BIPV/T system is accomplished through MATLAB/Simulink® dynamic modeling. Performance analysis for the BIPV/T system is performed under different seasonal conditions with in-depth techno-economic analyses to estimate the expected enhancement in the thermal, electrical, and economic performance of the system. Moreover, a sensitivity analysis is conducted to explore the impact of various factors on the energetic and economic performances of the proposed BIPV/T system. More so, the two-layer feed-forward back-propagation artificial neural network modeling is developed to accurately predict the hourly solar radiation and ambient temperature for the BIPV/T. Additionally, a multi-objective optimization using the NSGA-II method is also conducted for the minimization of the total BIPV/T plant area and maximization of the total efficiency and net thermal power of the system as well as to estimate the optimized operating conditions for input variables across different seasons within the provided ranges. The sensitivity analysis revealed that higher solar flux levels lead to increased electric output power of the BIPV/T plant, but total efficiency decreases due to higher thermal losses. Moreover, the proposed NSGA-II shows a feasible method to attain a maximum net thermal power and optimal total efficiency of 5320 W and 63% with a minimal total plant area of 32.89 m2 that attained a very low deviation index from the ideal solution. The levelised cost of electricity is obtained as 0.10 $/kWh under the optimal conditions. Thus, these findings offer valuable insights into the potential of BIPV/T systems as a sustainable and efficient energy solution for residential applications.

Details

Language :
English
ISSN :
11100168
Volume :
94
Issue :
131-148
Database :
Directory of Open Access Journals
Journal :
Alexandria Engineering Journal
Publication Type :
Academic Journal
Accession number :
edsdoj.9fc5af433e034e84a50fe6d5ec232610
Document Type :
article
Full Text :
https://doi.org/10.1016/j.aej.2024.03.049