Back to Search Start Over

Identification of microbe–disease signed associations via multi-scale variational graph autoencoder based on signed message propagation

Authors :
Huan Zhu
Hongxia Hao
Liang Yu
Source :
BMC Biology, Vol 22, Iss 1, Pp 1-15 (2024)
Publication Year :
2024
Publisher :
BMC, 2024.

Abstract

Abstract Background Plenty of clinical and biomedical research has unequivocally highlighted the tremendous significance of the human microbiome in relation to human health. Identifying microbes associated with diseases is crucial for early disease diagnosis and advancing precision medicine. Results Considering that the information about changes in microbial quantities under fine-grained disease states helps to enhance a comprehensive understanding of the overall data distribution, this study introduces MSignVGAE, a framework for predicting microbe-disease sign associations using signed message propagation. MSignVGAE employs a graph variational autoencoder to model noisy signed association data and extends the multi-scale concept to enhance representation capabilities. A novel strategy for propagating signed message in signed networks addresses heterogeneity and consistency among nodes connected by signed edges. Additionally, we utilize the idea of denoising autoencoder to handle the noise in similarity feature information, which helps overcome biases in the fused similarity data. MSignVGAE represents microbe-disease associations as a heterogeneous graph using similarity information as node features. The multi-class classifier XGBoost is utilized to predict sign associations between diseases and microbes. Conclusions MSignVGAE achieves AUROC and AUPR values of 0.9742 and 0.9601, respectively. Case studies on three diseases demonstrate that MSignVGAE can effectively capture a comprehensive distribution of associations by leveraging signed information.

Details

Language :
English
ISSN :
17417007
Volume :
22
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Biology
Publication Type :
Academic Journal
Accession number :
edsdoj.9fc4571f045d086486c10341093e2
Document Type :
article
Full Text :
https://doi.org/10.1186/s12915-024-01968-0