Back to Search Start Over

Taxogenomics of the Genus Cyclobacterium: Cyclobacterium xiamenense and Cyclobacterium halophilum as Synonyms and Description of Cyclobacterium plantarum sp. nov.

Authors :
Azadeh Shahinpei
Mohammad Ali Amoozegar
Leila Mirfeizi
Mahdi Moshtaghi Nikou
Antonio Ventosa
Cristina Sánchez-Porro
Source :
Microorganisms, Vol 8, Iss 4, p 610 (2020)
Publication Year :
2020
Publisher :
MDPI AG, 2020.

Abstract

The genus Cyclobacterium belongs to the phylum Bacteroidetes and includes eight species. Our study, based on the genomic parameters in silico DNA–DNA hybridization (GGDC), average nucleotide identity (OrthoANI), and average amino acid identity (AAI), confirmed that all current species of Cyclobacterium belong to this genus and constitute a coherent phylogenomic group, but with species forming two separate branches. In addition, the genome-based analyses revealed that Cyclobacterium xiamenense and Cyclobacterium halophilum are members of the same species. Besides, we carried out a taxonomic characterization of the new strain GBPx2T, isolated from the halophytic plant Salicornia sp. Analysis of its 16S rRNA gene sequence showed the highest sequence similarity (97.5%) to Cyclobacterium lianum HY9T. Percentages of GGDC and OrthoANI between strain GBPx2T and species of the genus Cyclobacterium were lower than the threshold value for species delineation. The DNA G+C content was 43.0 mol%. The polar lipids included phosphatidylethanolamine as well as one unidentified phospholipid and four unidentified lipids, and its major cellular fatty acids were iso-C15:0 and summed feature 3 (C16:1ω7c and/or iso-C15:0 2-OH). The only quinone present was menaquinone 7. Based on a combination of phenotypic, chemotaxonomic, and phylogenomic features, the GBPx2T strain represents a novel species of the genus Cyclobacterium, for which the name Cyclobacterium plantarum sp. nov. is proposed. The type strain of Cyclobacterium plantarum is GBPx2T (= IBRC-M 10634T = LMG 28551T).

Details

Language :
English
ISSN :
20762607
Volume :
8
Issue :
4
Database :
Directory of Open Access Journals
Journal :
Microorganisms
Publication Type :
Academic Journal
Accession number :
edsdoj.9fb9e3fb64f75b28d81e6c8221cb3
Document Type :
article
Full Text :
https://doi.org/10.3390/microorganisms8040610