Back to Search Start Over

Actin cytoskeleton differently regulates cell surface organization of GPI-anchored proteins in polarized epithelial cells and fibroblasts

Authors :
Stéphanie Lebreton
Simona Paladino
Mickaël Lelek
Marc Tramier
Christophe Zimmer
Chiara Zurzolo
Source :
Frontiers in Molecular Biosciences, Vol 11 (2024)
Publication Year :
2024
Publisher :
Frontiers Media S.A., 2024.

Abstract

The spatiotemporal compartmentalization of membrane-associated glycosylphosphatidylinositol-anchored proteins (GPI-APs) on the cell surface regulates their biological activities. These GPI-APs occupy distinct cellular functions such as enzymes, receptors, and adhesion molecules, and they are implicated in several vital cellular processes. Thus, unraveling the mechanisms and regulators of their membrane organization is essential. In polarized epithelial cells, GPI-APs are enriched at the apical surface, where they form small cholesterol-independent homoclusters and larger heteroclusters accommodating multiple GPI-AP species, all confined within areas of approximately 65–70 nm in diameter. Notably, GPI-AP homoclustering occurs in the Golgi apparatus through a cholesterol- and calcium-dependent mechanism that drives their apical sorting. Despite the critical role of Golgi GPI-AP clustering in their cell surface organization and the importance of cholesterol in heterocluster formation, the regulatory mechanisms governing GPI-AP surface organization, particularly in the context of epithelial polarity, remain elusive. Given that the actin cytoskeleton undergoes substantial remodeling during polarity establishment, this study explores whether the actin cytoskeleton regulates the spatiotemporal apical organization of GPI-APs in MDCK cells. Utilizing various imaging techniques (number and brightness, FRET/FLIM, and dSTORM coupled to pair correlation analysis), we demonstrate that the apical organization of GPI-APs, at different scales, does not rely on the actin cytoskeleton, unlike in fibroblastic cells. Interestingly, calcium chelation disrupts the organization of GPI-APs at the apical surface by impairing Golgi GPI-AP clustering, emphasizing the existence of an interplay among Golgi clustering, apical sorting, and surface organization in epithelial cells. In summary, our findings unveil distinct mechanisms regulating the organization of GPI-APs in cell types of different origins, plausibly allowing them to adapt to different external signals and different cellular environments in order to achieve specialized functions.

Details

Language :
English
ISSN :
2296889X
Volume :
11
Database :
Directory of Open Access Journals
Journal :
Frontiers in Molecular Biosciences
Publication Type :
Academic Journal
Accession number :
edsdoj.9fa0b161e643413bbf6e4506620c1af9
Document Type :
article
Full Text :
https://doi.org/10.3389/fmolb.2024.1360142