Back to Search Start Over

Unveiling a Hidden Event in Fluorescence Correlative Microscopy by AFM Nanomechanical Analysis

Authors :
Massimiliano Galluzzi
Bokai Zhang
Han Zhang
Lingzhi Wang
Yuan Lin
Xue-Feng Yu
Zhiqin Chu
Jiangyu Li
Source :
Frontiers in Molecular Biosciences, Vol 8 (2021)
Publication Year :
2021
Publisher :
Frontiers Media S.A., 2021.

Abstract

Fluorescent imaging combined with atomic force microscopy (AFM), namely AFM-fluorescence correlative microscopy, is a popular technology in life science. However, the influence of involved fluorophores on obtained mechanical information is normally underestimated, and such subtle changes are still challenging to detect. Herein, we combined AFM with laser light excitation to perform a mechanical quantitative analysis of a model membrane system labeled with a commonly used fluorophore. Mechanical quantification was additionally validated by finite element simulations. Upon staining, we noticed fluorophores forming a diffuse weakly organized overlayer on phospholipid supported membrane, easily detected by AFM mechanics. The laser was found to cause a degradation of mechanical stability of the membrane synergically with presence of fluorophore. In particular, a 30 min laser irradiation, with intensity similar to that in typical confocal scanning microscopy experiment, was found to result in a ∼40% decrease in the breakthrough force of the stained phospholipid bilayer along with a ∼30% reduction in its apparent elastic modulus. The findings highlight the significance of analytical power provided by AFM, which will allow us to “see” the “unseen” in correlative microscopy, as well as the necessity to consider photothermal effects when using fluorescent dyes to investigate, for example, the deformability and permeability of phospholipid membranes.

Details

Language :
English
ISSN :
2296889X
Volume :
8
Database :
Directory of Open Access Journals
Journal :
Frontiers in Molecular Biosciences
Publication Type :
Academic Journal
Accession number :
edsdoj.9f85ce372d4b439487ac48a107e6765d
Document Type :
article
Full Text :
https://doi.org/10.3389/fmolb.2021.669361