Back to Search Start Over

Matrix 3D ultrasound-assisted thyroid nodule volume estimation and radiofrequency ablation: a phantom study

Authors :
T. Boers
S. J. Braak
M. Versluis
S. Manohar
Source :
European Radiology Experimental, Vol 5, Iss 1, Pp 1-10 (2021)
Publication Year :
2021
Publisher :
SpringerOpen, 2021.

Abstract

Abstract Background Two-dimensional (2D) ultrasound is well established for thyroid nodule assessment and treatment guidance. However, it is hampered by a limited field of view and observer variability that may lead to inaccurate nodule classification and treatment. To cope with these limitations, we investigated the use of real-time three-dimensional (3D) ultrasound to improve the accuracy of volume estimation and needle placement during radiofrequency ablation. We assess a new 3D matrix transducer for nodule volume estimation and image-guided radiofrequency ablation. Methods Thirty thyroid nodule phantoms with thermochromic dye underwent volume estimation and ablation guided by a 2D linear and 3D mechanically-swept array and a 3D matrix transducer. Results The 3D matrix nodule volume estimations had a lower median difference with the ground truth (0.4 mL) compared to the standard 2D approach (2.2 mL, p < 0.001) and mechanically swept 3D transducer (2.0 mL, p = 0.016). The 3D matrix-guided ablation resulted in a similar nodule ablation coverage when compared to 2D-guidance (76.7% versus 80.8%, p = 0.542). The 3D mechanically swept transducer performed worse (60.1%, p = 0.015). However, 3D matrix and 2D guidance ablations lead to a larger ablated volume outside the nodule than 3D mechanically swept (5.1 mL, 4.2 mL (p = 0.274), 0.5 mL (p < 0.001), respectively). The 3D matrix and mechanically swept approaches were faster with 80 and 72.5 s/mL ablated than 2D with 105.5 s/mL ablated. Conclusions The 3D matrix transducer estimates volumes more accurately and can facilitate accurate needle placement while reducing procedure time.

Details

Language :
English
ISSN :
25099280
Volume :
5
Issue :
1
Database :
Directory of Open Access Journals
Journal :
European Radiology Experimental
Publication Type :
Academic Journal
Accession number :
edsdoj.9f837172000f4a5588e3a494c3bae7f3
Document Type :
article
Full Text :
https://doi.org/10.1186/s41747-021-00230-4