Back to Search Start Over

An Optimised Step-by-Step Protocol for Measuring Relative Telomere Length

Authors :
Mugdha V. Joglekar
Sarang N. Satoor
Wilson K.M. Wong
Feifei Cheng
Ronald C.W. Ma
Anandwardhan A. Hardikar
Source :
Methods and Protocols, Vol 3, Iss 2, p 27 (2020)
Publication Year :
2020
Publisher :
MDPI AG, 2020.

Abstract

Telomeres represent the nucleotide repeat sequences at the ends of chromosomes and are essential for chromosome stability. They can shorten at each round of DNA replication mainly because of incomplete DNA synthesis of the lagging strand. Reduced relative telomere length is associated with aging and a range of disease states. Different methods such as terminal restriction fragment analysis, real-time quantitative PCR (qPCR) and fluorescence in situ hybridization are available to measure telomere length; however, the qPCR-based method is commonly used for large population-based studies. There are multiple variations across qPCR-based methods, including the choice of the single-copy gene, primer sequences, reagents, and data analysis methods in the different reported studies so far. Here, we provide a detailed step-by-step protocol that we have optimized and successfully tested in the hands of other users. This protocol will help researchers interested in measuring relative telomere lengths in cells or across larger clinical cohort/study samples to determine associations of telomere length with health and disease.

Details

Language :
English
ISSN :
24099279
Volume :
3
Issue :
2
Database :
Directory of Open Access Journals
Journal :
Methods and Protocols
Publication Type :
Academic Journal
Accession number :
edsdoj.9f1db1583dad4cb896464b58cef02c09
Document Type :
article
Full Text :
https://doi.org/10.3390/mps3020027