Back to Search
Start Over
Depth and Stanley depth of the edge ideals of the powers of paths and cycles
- Source :
- Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica, Vol 27, Iss 3, Pp 113-135 (2019)
- Publication Year :
- 2019
- Publisher :
- Sciendo, 2019.
-
Abstract
- Let k be a positive integer. We compute depth and Stanley depth of the quotient ring of the edge ideal associated to the kth power of a path on n vertices. We show that both depth and Stanley depth have the same values and can be given in terms of k and n. If n≣0, k + 1, k + 2, . . . , 2k(mod(2k + 1)), then we give values of depth and Stanley depth of the quotient ring of the edge ideal associated to the kth power of a cycle on n vertices and tight bounds otherwise, in terms of n and k. We also compute lower bounds for the Stanley depth of the edge ideals associated to the kth power of a path and a cycle and prove a conjecture of Herzog for these ideals.
Details
- Language :
- English
- ISSN :
- 18440835
- Volume :
- 27
- Issue :
- 3
- Database :
- Directory of Open Access Journals
- Journal :
- Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.9f1973f0f06a4015becf1455e4c50f75
- Document Type :
- article
- Full Text :
- https://doi.org/10.2478/auom-2019-0037