Back to Search Start Over

Depth and Stanley depth of the edge ideals of the powers of paths and cycles

Authors :
Iqbal Zahid
Ishaq Muhammad
Source :
Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica, Vol 27, Iss 3, Pp 113-135 (2019)
Publication Year :
2019
Publisher :
Sciendo, 2019.

Abstract

Let k be a positive integer. We compute depth and Stanley depth of the quotient ring of the edge ideal associated to the kth power of a path on n vertices. We show that both depth and Stanley depth have the same values and can be given in terms of k and n. If n≣0, k + 1, k + 2, . . . , 2k(mod(2k + 1)), then we give values of depth and Stanley depth of the quotient ring of the edge ideal associated to the kth power of a cycle on n vertices and tight bounds otherwise, in terms of n and k. We also compute lower bounds for the Stanley depth of the edge ideals associated to the kth power of a path and a cycle and prove a conjecture of Herzog for these ideals.

Details

Language :
English
ISSN :
18440835
Volume :
27
Issue :
3
Database :
Directory of Open Access Journals
Journal :
Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica
Publication Type :
Academic Journal
Accession number :
edsdoj.9f1973f0f06a4015becf1455e4c50f75
Document Type :
article
Full Text :
https://doi.org/10.2478/auom-2019-0037