Back to Search
Start Over
Temporal Modeling of Neural Net Input/Output Behaviors: The Case of XOR
- Source :
- Systems, Vol 5, Iss 1, p 7 (2017)
- Publication Year :
- 2017
- Publisher :
- MDPI AG, 2017.
-
Abstract
- In the context of the modeling and simulation of neural nets, we formulate definitions for the behavioral realization of memoryless functions. The definitions of realization are substantively different for deterministic and stochastic systems constructed of neuron-inspired components. In contrast to earlier generations of neural net models, third generation spiking neural nets exhibit important temporal and dynamic properties, and random neural nets provide alternative probabilistic approaches. Our definitions of realization are based on the Discrete Event System Specification (DEVS) formalism that fundamentally include temporal and probabilistic characteristics of neuron system inputs, state, and outputs. The realizations that we construct—in particular for the Exclusive Or (XOR) logic gate—provide insight into the temporal and probabilistic characteristics that real neural systems might display. Our results provide a solid system-theoretical foundation and simulation modeling framework for the high-performance computational support of such applications.
Details
- Language :
- English
- ISSN :
- 20798954
- Volume :
- 5
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Systems
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.9ebab3375cf6405e8af294807acdd863
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/systems5010007