Back to Search
Start Over
Applying fuzzy qualitative comparative analysis to identify typical symptoms of COVID-19 infection in a primary care unit, Rio de Janeiro, Brazil
- Source :
- Scientific Reports, Vol 12, Iss 1, Pp 1-7 (2022)
- Publication Year :
- 2022
- Publisher :
- Nature Portfolio, 2022.
-
Abstract
- Abstract This study aims to identify a set of symptoms that could be predictive of SARS-CoV-2 cases in the triage of Primary Care services with the contribution of Qualitative Comparative Analysis (QCA) using Fuzzy Sets (fsQCA). A cross-sectional study was carried out in a Primary Health Care Unit/FIOCRUZ from 09/17/2020 to 05/05/2021. The study population was suspect cases that performed diagnostic tests for COVID-19. We collected information about the symptoms to identify which configurations are associated with positive and negative cases. For analysis, we used fsQCA to explain the outcomes “being a positive case” and “not being a positive case”. The solution term “loss of taste or smell and no headache” showed the highest degree of association with the positive result (consistency = 0.81). The solution term “absence of loss of taste or smell combined with the absence of fever” showed the highest degree of association (consistency = 0,79) and is the one that proportionally best explains the negative result. Our results may be useful to the presumptive clinical diagnosis of COVID-19 in scenarios where access to diagnostic tests is not available. We used an innovative method used in complex problems in Public Health, the fsQCA.
Details
- Language :
- English
- ISSN :
- 20452322
- Volume :
- 12
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Scientific Reports
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.9ea6c8b62554475792a83dd6c227b574
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41598-022-26283-y