Back to Search Start Over

Highly parallelized droplet cultivation and prioritization of antibiotic producers from natural microbial communities

Authors :
Lisa Mahler
Sarah P Niehs
Karin Martin
Thomas Weber
Kirstin Scherlach
Christian Hertweck
Martin Roth
Miriam A Rosenbaum
Source :
eLife, Vol 10 (2021)
Publication Year :
2021
Publisher :
eLife Sciences Publications Ltd, 2021.

Abstract

Antibiotics from few culturable microorganisms have saved millions of lives since the 20th century. But with resistance formation, these compounds become increasingly ineffective, while the majority of microbial and with that chemical compound diversity remains inaccessible for cultivation and exploration. Culturing recalcitrant bacteria is a stochastic process. But conventional methods are limited to low throughput. By increasing (i) throughput and (ii) sensitivity by miniaturization, we innovate microbiological cultivation to comply with biological stochasticity. Here, we introduce a droplet-based microscale cultivation system, which is directly coupled to a high-throughput screening for antimicrobial activity prior to strain isolation. We demonstrate that highly parallelized in-droplet cultivation starting from single cells results in the cultivation of yet uncultured species and a significantly higher bacterial diversity than standard agar plate cultivation. Strains able to inhibit intact reporter strains were isolated from the system. A variety of antimicrobial compounds were detected for a selected potent antibiotic producer.

Details

Language :
English
ISSN :
2050084X
Volume :
10
Database :
Directory of Open Access Journals
Journal :
eLife
Publication Type :
Academic Journal
Accession number :
edsdoj.9e80e5e550417ab6c984afe0642d0c
Document Type :
article
Full Text :
https://doi.org/10.7554/eLife.64774