Back to Search Start Over

A semiconductor-electrocatalyst nano interface constructed for successive photoelectrochemical water oxidation

Authors :
Zilong Wu
Xiangyu Liu
Haijing Li
Zhiyi Sun
Maosheng Cao
Zezhou Li
Chaohe Fang
Jihan Zhou
Chuanbao Cao
Juncai Dong
Shenlong Zhao
Zhuo Chen
Source :
Nature Communications, Vol 14, Iss 1, Pp 1-9 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract Photoelectrochemical water splitting has long been considered an ideal approach to producing green hydrogen by utilizing solar energy. However, the limited photocurrents and large overpotentials of the anodes seriously impede large-scale application of this technology. Here, we use an interfacial engineering strategy to construct a nanostructural photoelectrochemical catalyst by incorporating a semiconductor CdS/CdSe-MoS2 and NiFe layered double hydroxide for the oxygen evolution reaction. Impressively, the as-prepared photoelectrode requires an low potential of 1.001 V vs. reversible hydrogen electrode for a photocurrent density of 10 mA cm−2, and this is 228 mV lower than the theoretical water splitting potential (1.229 vs. reversible hydrogen electrode). Additionally, the generated current density (15 mA cm−2) of the photoelectrode at a given overpotential of 0.2 V remains at 95% after long-term testing (100 h). Operando X-ray absorption spectroscopy revealed that the formation of highly oxidized Ni species under illumination provides large photocurrent gains. This finding opens an avenue for designing high-efficiency photoelectrochemical catalysts for successive water splitting.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.9e455aa0ffe944ab8ba771dbff9b5324
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-023-38285-z