Back to Search Start Over

Remote Sensing on Alfalfa as an Approach to Optimize Production Outcomes: A Review of Evidence and Directions for Future Assessments

Authors :
Danilo Tedesco
Luciana Nieto
Carlos Hernández
Juan F. Rybecky
Doohong Min
Ajay Sharda
Kevin J. Hamilton
Ignacio A. Ciampitti
Source :
Remote Sensing, Vol 14, Iss 19, p 4940 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

Alfalfa (Medicago sativa L.) is one of the most relevant forage crops due to its importance for livestock. Timely harvesting is critical to secure adequate forage quality. However, farmers face challenges not only to decide the optimal harvesting time but to predict the optimum levels for both forage production and quality. Fortunately, remote sensing technologies can significantly contribute to obtaining production and quality insights, providing scalability, and supporting complex farming decision-making. Therefore, we aim to develop a systematic review of the current scientific literature to identify the current status of research in remote sensing for alfalfa and to evaluate new perspectives for enhancing prediction of both biomass and quality (herein defined as crude protein and fibers) for alfalfa. Twelve papers were included in the database from a total of 198 studies included in the initial screening process. The main findings were (i) more than two-thirds of the studies focused on predicting biomass; (ii) half of the studies used terrestrial platforms, with only 33% using drones and 17% using satellite for remote sensing; (iii) no studies have used satellites assessed alfalfa quality traits; (iv) improved biomass and quality estimations were obtained when remote sensing data was combined with environmental information; (v) due to a direct relationship between biomass and quality, modeling them algorithmically improves the accuracy of estimation as well; (vi) from spectral wavelengths, dry biomass was better estimated in regions near 398, 551, 670, 730, 780, 865, and 1077 nm, wet biomass in regions near 478, 631, 670, 730, 780, 834, 933, 1034, and 1538 nm, and quality traits identified with narrow and very specific wavelengths (e.g., 398, 461, 551, 667, 712, and 1077 nm). Our findings might serve as a foundation to guide further research and the development of handheld sensors for assessing alfalfa biomass and quality.

Details

Language :
English
ISSN :
20724292
Volume :
14
Issue :
19
Database :
Directory of Open Access Journals
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
edsdoj.9e3f66250bc747c8b4d81b6ef18a227b
Document Type :
article
Full Text :
https://doi.org/10.3390/rs14194940