Back to Search Start Over

Thermal equation of state of rhodium characterized by XRD in a resistively heated diamond anvil cell

Authors :
Jose Luis Rodrigo-Ramon
Simone Anzellini
Claudio Cazorla
Pablo Botella
Aser Garcia-Beamud
Josu Sanchez-Martin
Gaston Garbarino
Angelika D. Rosa
Samuel Gallego-Parra
Daniel Errandonea
Source :
Scientific Reports, Vol 14, Iss 1, Pp 1-13 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract The high-pressure and high-temperature structural, mechanical, and dinamical stability of rhodium has been investigated via synchrotron X-ray diffraction using a resistively heated diamond anvil cell and density functional theory. The isothermal compression data have been fitted with a Rydberg-Vinet equation of state (EoS) with best-fitting parameters $$V_0$$ V 0 =55.046(16) Å $$^3$$ 3 , $$K_0$$ K 0 = 251(3) GPa, and $$K'_0$$ K 0 ′ = 5.7(2). The thermal equation of state has been determined based upon the data collected following four different isotherms and has been fitted to a Holland and Powell thermal equation-of-state model with $$\alpha _0=$$ α 0 = 3.36(7)x10 $$^{-5}$$ - 5 K $$^{-1}$$ - 1 . The measured equation of state and structural parameters have been compared to the results of ab initio simulations. The agreement between theory and experiments is generally quite good. The present results solve controversies between previous studies which reported values of the bulk modulus from 240 to 300 GPa.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.9e1f9e9be9f04ec39b3eb548e20875e7
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-024-78006-0