Back to Search Start Over

Disparate nonlinear neural dynamics measured with different techniques in macaque and human V1

Authors :
Jingyang Zhou
Matt Whitmire
Yuzhi Chen
Eyal Seidemann
Source :
Scientific Reports, Vol 14, Iss 1, Pp 1-12 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Diverse neuro-imaging techniques measure different aspects of neural responses with distinct spatial and temporal resolutions. Relating measured neural responses across different methods has been challenging. Here, we take a step towards overcoming this challenge, by comparing the nonlinearity of neural dynamics measured across methods. We used widefield voltage-sensitive dye imaging (VSDI) to measure neural population responses in macaque V1 to visual stimuli with a wide range of temporal waveforms. We found that stimulus-evoked VSDI responses are surprisingly near-additive in time. These results are qualitatively different from the strong sub-additive dynamics previously measured using fMRI and electrocorticography (ECoG) in human visual cortex with a similar set of stimuli. To test whether this discrepancy is specific to VSDI—a signal dominated by subthreshold neural activity, we repeated our measurements using widefield imaging of a genetically encoded calcium indicator (GcaMP6f)—a signal dominated by spiking activity, and found that GCaMP signals in macaque V1 are also near-additive. Therefore, the discrepancies in the extent of sub-additivity between the macaque and the human measurements are unlikely due to differences between sub- and supra-threshold neural responses. Finally, we use a simple yet flexible delayed normalization model to capture these different dynamics across measurements (with different model parameters). The model can potentially generalize to a broader set of stimuli, which aligns with previous suggestion that dynamic gain-control is a canonical computation contributing to neural processing in the brain.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.9debf4e0660f419086c05ae9073fca3f
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-024-63685-6