Back to Search Start Over

Adversarial Robustness of Deep Reinforcement Learning Based Dynamic Recommender Systems

Authors :
Siyu Wang
Yuanjiang Cao
Xiaocong Chen
Lina Yao
Xianzhi Wang
Quan Z. Sheng
Source :
Frontiers in Big Data, Vol 5 (2022)
Publication Year :
2022
Publisher :
Frontiers Media S.A., 2022.

Abstract

Adversarial attacks, e.g., adversarial perturbations of the input and adversarial samples, pose significant challenges to machine learning and deep learning techniques, including interactive recommendation systems. The latent embedding space of those techniques makes adversarial attacks challenging to detect at an early stage. Recent advance in causality shows that counterfactual can also be considered one of the ways to generate the adversarial samples drawn from different distribution as the training samples. We propose to explore adversarial examples and attack agnostic detection on reinforcement learning (RL)-based interactive recommendation systems. We first craft different types of adversarial examples by adding perturbations to the input and intervening on the casual factors. Then, we augment recommendation systems by detecting potential attacks with a deep learning-based classifier based on the crafted data. Finally, we study the attack strength and frequency of adversarial examples and evaluate our model on standard datasets with multiple crafting methods. Our extensive experiments show that most adversarial attacks are effective, and both attack strength and attack frequency impact the attack performance. The strategically-timed attack achieves comparative attack performance with only 1/3 to 1/2 attack frequency. Besides, our white-box detector trained with one crafting method has the generalization ability over several other crafting methods.

Details

Language :
English
ISSN :
2624909X
Volume :
5
Database :
Directory of Open Access Journals
Journal :
Frontiers in Big Data
Publication Type :
Academic Journal
Accession number :
edsdoj.9dd3ce85b61e47c0821c9162dd014b11
Document Type :
article
Full Text :
https://doi.org/10.3389/fdata.2022.822783