Back to Search Start Over

Video behavior recognition based on actional-structural graph convolution and temporal extension module

Authors :
Hui Xu
Jun Kong
Mengyao Liang
Hui Sun
Miao Qi
Source :
Electronic Research Archive, Vol 30, Iss 11, Pp 4157-4177 (2022)
Publication Year :
2022
Publisher :
AIMS Press, 2022.

Abstract

Human behavior recognition has always been a hot spot for research in computer vision. In this paper, we propose a novel video behavior recognition method based on Actional-Structural Graph Convolution and a Temporal Extension Module under the framework of a Spatio-Temporal Graph Convolution Neural Network, which can optimize the spatial and temporal features simultaneously. The basic network framework of our method consists of three parts: spatial graph convolution module, temporal extension module and attention mechanism module. In the spatial dimension, the action graph convolution is utilized to obtain abundant spatial features by capturing the correlations of distant joint features, and the structural graph convolution expands the existing skeleton graph to acquire the spatial features of adjacent joints. In the time dimension, the sampling range of the temporal graph is expanded for extracting the same and adjacent joints of adjacent frames. Furthermore, attention mechanisms are introduced to improve the performance of our method. In order to verify the effectiveness and accuracy of our method, a large number of experiments were carried out on two standard behavior recognition datasets: NTU-RGB+D and Kinetics. Comparative experiment results show that our proposed method can achieve better performance.

Details

Language :
English
ISSN :
26881594
Volume :
30
Issue :
11
Database :
Directory of Open Access Journals
Journal :
Electronic Research Archive
Publication Type :
Academic Journal
Accession number :
edsdoj.9dd307a7f342ee970a7f094f93013b
Document Type :
article
Full Text :
https://doi.org/10.3934/era.2022210?viewType=HTML