Back to Search Start Over

Mechanism of Action of Isoflavone Derived from Soy-Based Tempeh as an Antioxidant and Breast Cancer Inhibitor via Potential Upregulation of miR-7-5p: A Multimodal Analysis Integrating Pharmacoinformatics and Cellular Studies

Authors :
Fahrul Nurkolis
Nurpudji Astuti Taslim
Dain Lee
Moon Nyeo Park
Seungjoon Moon
Hardinsyah Hardinsyah
Raymond Rubianto Tjandrawinata
Nelly Mayulu
Made Astawan
Trina Ekawati Tallei
Bonglee Kim
Source :
Antioxidants, Vol 13, Iss 6, p 632 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

Breast cancer presents a significant global health challenge with rising incidence rates worldwide. Despite current efforts, it remains inadequately controlled. Functional foods, notably tempeh, have emerged as promising candidates for breast cancer prevention and treatment due to bioactive peptides and isoflavones exhibiting potential anticancer properties by serving as antioxidants, inducing apoptosis, and inhibiting cancer cell proliferation. This study integrates pharmacoinformatics and cellular investigations (i.e., a multifaceted approach) to elucidate the antioxidative and anti-breast cancer properties of tempeh-derived isoflavones. Methodologies encompass metabolomic profiling, in silico analysis, antioxidant assays, and in vitro experiments. Daidzein and genistein exhibited potential therapeutic options for breast cancer treatment and as antioxidant agents. In vitro studies also supported their efficacy against breast cancer and their ability to scavenge radicals, particularly in soy-based tempeh powder (SBT-P) and its isoflavone derivatives. Results have demonstrated a significant downregulation of breast cancer signaling proteins and increased expression of miR-7-5p, a microRNA with tumor-suppressive properties. Notably, the LD50 values of SBT-P and its derivatives on normal breast cell lines indicate their potential safety, with minimal cytotoxic effects on MCF-10A cells compared to control groups. The study underscores the favorable potential of SBT-P as a safe therapeutic option for breast cancer treatment, warranting further clinical exploration.

Details

Language :
English
ISSN :
20763921
Volume :
13
Issue :
6
Database :
Directory of Open Access Journals
Journal :
Antioxidants
Publication Type :
Academic Journal
Accession number :
edsdoj.9dd23f5d7f91482fadec5ca22277c351
Document Type :
article
Full Text :
https://doi.org/10.3390/antiox13060632