Back to Search
Start Over
Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters
- Source :
- Earth and Planetary Physics, Vol 2, Iss 1, Pp 1-14 (2018)
- Publication Year :
- 2018
- Publisher :
- Science Press, 2018.
-
Abstract
- Whistler-mode chorus waves are regarded as an important acceleration mechanism contributing to the formation of relativistic and ultra-relativistic electrons in the Jovian radiation belts. Quantitative determination of the chorus wave driven electron scattering effect in the Jovian magnetosphere requires detailed information of both ambient magnetic field and plasma density and wave spectral property, which however cannot be always readily acquired from observations of existed missions to Jupiter. We therefore perform a comprehensive analysis of the sensitivity of chorus induced electron scattering rates to ambient magnetospheric and wave parameters in the Jovian radiation belts to elaborate to which extent the diffusion coefficients depend on a number of key input parameters. It is found that quasi-linear electron scattering rates by chorus can be strongly affected by the ambient magnetic field intensity, the wave latitudinal coverage, and the peak frequency and bandwidth of the wave spectral distribution in the Jovian magnetosphere, while they only rely slightly on the background plasma density profile and the peak wave normal angle, especially when the wave emissions are confined at lower latitudes. Given the chorus wave amplitude, chorus induced electron scattering rates strongly depend on Jovian L-shell to exhibit a tendency approximately proportional to LJ3. Our comprehensive analysis explicitly demonstrates the importance of reliable information of both the ambient magnetospheric state and wave distribution property to understanding the dynamic electron evolution in the Jovian radiation belts and therefore has implications for future mission planning to explore the extreme particle radiation environment of Jupiter and its satellites.
Details
- Language :
- English
- ISSN :
- 20963955
- Volume :
- 2
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Earth and Planetary Physics
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.9db23261f0354267981d37fbb027ecb4
- Document Type :
- article
- Full Text :
- https://doi.org/10.26464/epp2018001?pageType=en