Back to Search Start Over

Monitoring of carbon-water fluxes at Eurasian meteorological stations using random forest and remote sensing

Authors :
Mingjuan Xie
Xiaofei Ma
Yuangang Wang
Chaofan Li
Haiyang Shi
Xiuliang Yuan
Olaf Hellwich
Chunbo Chen
Wenqiang Zhang
Chen Zhang
Qing Ling
Ruixiang Gao
Yu Zhang
Friday Uchenna Ochege
Amaury Frankl
Philippe De Maeyer
Nina Buchmann
Iris Feigenwinter
Jørgen E. Olesen
Radoslaw Juszczak
Adrien Jacotot
Aino Korrensalo
Andrea Pitacco
Andrej Varlagin
Ankit Shekhar
Annalea Lohila
Arnaud Carrara
Aurore Brut
Bart Kruijt
Benjamin Loubet
Bernard Heinesch
Bogdan Chojnicki
Carole Helfter
Caroline Vincke
Changliang Shao
Christian Bernhofer
Christian Brümmer
Christian Wille
Eeva-Stiina Tuittila
Eiko Nemitz
Franco Meggio
Gang Dong
Gary Lanigan
Georg Niedrist
Georg Wohlfahrt
Guoyi Zhou
Ignacio Goded
Thomas Gruenwald
Janusz Olejnik
Joachim Jansen
Johan Neirynck
Juha-Pekka Tuovinen
Junhui Zhang
Katja Klumpp
Kim Pilegaard
Ladislav Šigut
Leif Klemedtsson
Luca Tezza
Lukas Hörtnagl
Marek Urbaniak
Marilyn Roland
Marius Schmidt
Mark A. Sutton
Markus Hehn
Matthew Saunders
Matthias Mauder
Mika Aurela
Mika Korkiakoski
Mingyuan Du
Nadia Vendrame
Natalia Kowalska
Paul G. Leahy
Pavel Alekseychik
Peili Shi
Per Weslien
Shiping Chen
Silvano Fares
Thomas Friborg
Tiphaine Tallec
Tomomichi Kato
Torsten Sachs
Trofim Maximov
Umberto Morra di Cella
Uta Moderow
Yingnian Li
Yongtao He
Yoshiko Kosugi
Geping Luo
Source :
Scientific Data, Vol 10, Iss 1, Pp 1-18 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract Simulating the carbon-water fluxes at more widely distributed meteorological stations based on the sparsely and unevenly distributed eddy covariance flux stations is needed to accurately understand the carbon-water cycle of terrestrial ecosystems. We established a new framework consisting of machine learning, determination coefficient (R2), Euclidean distance, and remote sensing (RS), to simulate the daily net ecosystem carbon dioxide exchange (NEE) and water flux (WF) of the Eurasian meteorological stations using a random forest model or/and RS. The daily NEE and WF datasets with RS-based information (NEE-RS and WF-RS) for 3774 and 4427 meteorological stations during 2002–2020 were produced, respectively. And the daily NEE and WF datasets without RS-based information (NEE-WRS and WF-WRS) for 4667 and 6763 meteorological stations during 1983–2018 were generated, respectively. For each meteorological station, the carbon-water fluxes meet accuracy requirements and have quasi-observational properties. These four carbon-water flux datasets have great potential to improve the assessments of the ecosystem carbon-water dynamics.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20524463
Volume :
10
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Data
Publication Type :
Academic Journal
Accession number :
edsdoj.9d796cf293f4fca89149c1fff53e04b
Document Type :
article
Full Text :
https://doi.org/10.1038/s41597-023-02473-9